A Model for Natural Language Attack on Text Classification and Inference

Overview

TextFooler

A Model for Natural Language Attack on Text Classification and Inference

This is the source code for the paper: Jin, Di, et al. "Is BERT Really Robust? Natural Language Attack on Text Classification and Entailment." arXiv preprint arXiv:1907.11932 (2019). If you use the code, please cite the paper:

@article{jin2019bert,
  title={Is BERT Really Robust? Natural Language Attack on Text Classification and Entailment},
  author={Jin, Di and Jin, Zhijing and Zhou, Joey Tianyi and Szolovits, Peter},
  journal={arXiv preprint arXiv:1907.11932},
  year={2019}
}

Data

Our 7 datasets are here.

Prerequisites:

Required packages are listed in the requirements.txt file:

pip install -r requirements.txt

How to use

  • Run the following code to install the esim package:
cd ESIM
python setup.py install
cd ..
python comp_cos_sim_mat.py [PATH_TO_COUNTER_FITTING_WORD_EMBEDDINGS]
  • Run the following code to generate the adversaries for text classification:
python attack_classification.py

For Natural langauge inference:

python attack_nli.py

Examples of run code for these two files are in run_attack_classification.py and run_attack_nli.py. Here we explain each required argument in details:

  • --dataset_path: The path to the dataset. We put the 1000 examples for each dataset we used in the paper in the folder data.
  • --target_model: Name of the target model such as ''bert''.
  • --target_model_path: The path to the trained parameters of the target model. For ease of replication, we shared the trained BERT model parameters, the trained LSTM model parameters, and the trained CNN model parameters on each dataset we used.
  • --counter_fitting_embeddings_path: The path to the counter-fitting word embeddings.
  • --counter_fitting_cos_sim_path: This is optional. If given, then the pre-computed cosine similarity scores based on the counter-fitting word embeddings will be loaded to save time. If not, it will be calculated.
  • --USE_cache_path: The path to save the USE model file (Downloading is automatic if this path is empty).

Two more things to share with you:

  1. In case someone wants to replicate our experiments for training the target models, we shared the used seven datasets we have processed for you!

  2. In case someone may want to use our generated adversary results towards the benchmark data directly, here it is.

Owner
Di Jin
Di Jin
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022