Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Related tags

Deep Learningabcd
Overview

Action-Based Conversations Dataset (ABCD)

This respository contains the code and data for ABCD (Chen et al., 2021)

Introduction

Whereas existing goal-oriented dialogue datasets focus mainly on identifying user intents, customer interactions in reality often involve agents following multi-step procedures derived from explicitly-defined guidelines. For example, in a online shopping scenario, a customer might request a refund for a past purchase. However, before honoring such a request, the agent should check the company policies to see if a refund is warranted. It is very likely that the agent will need to verify the customer's identity and check that the purchase was made within a reasonable timeframe.

To study dialogue systems in more realistic settings, we introduce the Action-Based Conversations Dataset (ABCD), where an agent's actions must be balanced between the desires expressed by the customer and the constraints set by company policies. The dataset contains over 10K human-to-human dialogues with 55 distinct user intents requiring unique sequences of actions to achieve task success. We also design a new technique called Expert Live Chat for collecting data when there are two unequal users engaging in real-time conversation. Please see the paper for more details.

Paper link: https://arxiv.org/abs/2104.00783

Blog link: https://www.asapp.com/blog/action-based-conversations-dataset/

Agent Dashboard

Customer Site

Usage

All code is run by executing the corresponding command within the shell script run.sh, which will kick off the data preparation and training within main.py. To use, first unzip the file found in data/abcd_v1.1.json.gz using the gunzip command (or similar). Then comment or uncomment the appropriate lines in the shell script to get desired behavior. Finally, enter sh run.sh into the command line to get started. Use the --help option of argparse for flag details or read through the file located within utils/arguments.py.

Preparation

Raw data will be loaded from the data folder and prepared into features that are placed into Datasets. If this has already occured, then the system will instead read in the prepared features from cache.

If running CDS for the first time, uncomment out the code within the run script to execute embed.py which will prepare the utterances for ranking.

Training

To specify the task for training, simply use the --task option with either ast or cds, for Action State Tracking and Cascading Dialogue Success respectively. Options for different model types are bert, albert and roberta. Loading scripts can be tuned to offer various other behaviors.

Evaluation

Activate evaluation using the --do-eval flag. By default, run.sh will perform cascading evaluation. To include ablations, add the appropriate options of --use-intent or --use-kb.

Data

The preprocessed data is found in abcd_v1.1.json which is a dictionary with keys of train, dev and test. Each split is a list of conversations, where each conversation is a dict containing:

  • convo_id: a unique conversation identifier
  • scenario: the ground truth scenario used to generate the prompt
  • original: the raw conversation of speaker and utterances as a list of tuples
  • delexed: the delexicalized conversation used for training and evaluation, see below for details

We provide the delexed version so new models performing the same tasks have comparable pre-processing. The original data is also provided in case you want to use the utterances for some other purpose.

For a quick preview, a small sample of chats is provided to help get started. Concretely, abcd_sample.json is a list containing three random conversations from the training set.

Scenario

Each scene dict contains details about the customer setup along with the underlying flow and subflow information an agent should use to address the customer concern. The components are:

  • Personal: personal data related to the (fictional) customer including account_id, customer name, membership level, phone number, etc.
  • Order: order info related to what the customer purchased or would like to purchase. Includes address, num_products, order_id, product names, and image info
  • Product: product details if applicable, includes brand name, product type and dollar amount
  • Flow and Subflow: these represent the ground truth user intent. They are used to generate the prompt, but are not shown directly the customer. The job of the agent is to infer this (latent) intent and then match against the Agent Guidelines to resolve the customer issue.

Guidelines

The agent guidelines are offered in their original form within Agent Guidelines for ABCD. This has been transformed into a formatted document for parsing by a model within data/guidelines.json. The intents with their button actions about found within kb.json. Lastly, the breakdown of all flows, subflows, and actions are found within ontology.json.

Conversation

Each conversation is made up of a list of turns. Each turn is a dict with five parts:

  • Speaker: either "agent", "customer" or "action"
  • Text: the utterance of the agent/customer or the system generated response of the action
  • Turn_Count: integer representing the turn number, starting from 1
  • Targets : list of five items representing the subtask labels
    • Intent Classification (text) - 55 subflow options
    • Nextstep Selection (text) - take_action, retrieve_utterance or end_conversation; 3 options
    • Action Prediction (text) - the button clicked by the agent; 30 options
    • Value Filling (list) - the slot value(s) associated with the action above; 125 options
    • Utterance Ranking (int) - target position within list of candidates; 100 options
  • Candidates: list of utterance ids representing the pool of 100 candidates to choose from when ranking. The surface form text can be found in utterances.json where the utt_id is the index. Only applicable when the current turn is a "retrieve_utterance" step.

In contrast to the original conversation, the delexicalized version will replace certain segments of text with special tokens. For example, an utterance might say "My Account ID is 9KFY4AOHGQ". This will be changed into "my account id is <account_id>".

Contact

Please email [email protected] for questions or feedback.

Citation

@inproceedings{chen2021abcd,
    title = "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems",
    author = "Chen, Derek and
        Chen, Howard and
        Yang, Yi and
        Lin, Alex and
        Yu, Zhou",
    booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for 
    	Computational Linguistics: Human Language Technologies, {NAACL-HLT} 2021",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.naacl-main.239",
    pages = "3002--3017"
}
Owner
ASAPP Research
AI for Enterprise
ASAPP Research
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022