This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

Overview

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Skin Lesion detection using YOLO

This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

Predictions

YOLOv3

YOLO stands for "You Only Look Once" which uses Convolutional Neural Networks for Object Detection. On a single image, YOLO may detect multiple objects. It implies that, in addition to predicting object classes, YOLO also recognises its positions in the image. The entire image is processed by a single Neural Network in YOLO. The picture is divided into regions using this Neural Network, which generates probabilities for each region. YOLO predicts multiple bounding boxes that cover some regions of the image and then based on the probabilities, picks the best one.

Architecture of YOLOv3:

Architecture of YOLOv3

  • YOLOv3 has a total of 106 layers where detections are made at 82, 94 and 106 layers.
  • It consists of a residual blocks, skip connections and up-sampling.
  • Each convolutional layer is followed by batch normalization layer and Leaky ReLU activation function.
  • There are no pooling layers, but instead, additional convolutional layers with stride 2, are used to down-sample feature maps.

Input:

Input images themselves can be of any size, there is no need to resize them before feeding to the network. However, all the images must be stored in a single folder. In the same folder, there should be a text file, one for each image(with the same file name), containing the "true" annotations of the bounding box in YOLOv3 format i.e.,


    
     
      
       
        
       
      
     
    
   

where,

  • class id = label index of the class to be annotated
  • Xo = X coordinate of the bounding box’s centre
  • Yo = Y coordinate of the bounding box’s centre
  • W = Width of the bounding box
  • H = Height of the bounding box
  • X = Width of the image
  • Y = Height of the image

For multiple objects in the same image, this annotation is saved line-by-line for each object.

Steps:

Note: I have used Google Colab which supports Linux commands. The steps for running it on local windows computer is different.

  1. Create "true" annotations using Annotate_YOLO.py which takes in segmented(binary) images as input and returns text file for every image, labelled in the YOLO format.

  2. Clone darknet from AlexeyAB's GitHub repository, adjust the Makefile to enable OPENCV and GPU and then build darknet.

    # Clone darknet repo
    !git clone https://github.com/AlexeyAB/darknet
    
    # Change makefile to have GPU and OPENCV enabled
    %cd darknet
    !chmod +x ./darknet
    !sed -i 's/OPENCV=0/OPENCV=1/' Makefile
    !sed -i 's/GPU=0/GPU=1/' Makefile
    !sed -i 's/CUDNN=0/CUDNN=1/' Makefile
    !sed -i 's/CUDNN_HALF=0/CUDNN_HALF=1/' Makefile
    
    # To use the darknet executable file
    !make
  3. Download the pre-trained YOLO weights from darknet. It is trained on a coco dataset consisting of 80 classes.

    !wget https://pjreddie.com/media/files/darknet53.conv.74
    
  4. Define the helper function as in Helper.py that is used to display images.

  5. Split the dataset into train, validation and test set (including the labels) and store it in darknet/data folder with filenames "obj", "valid", and "test" repectively. In my case, total images = 2594 out of which,

    Train = 2094 images; Validation = 488 images; Test = 12 images.

  6. Create obj.names consisting of class names (one class name per line) and also create obj.data that points to the file paths of train data, validation data and backup folder which will store the weights of the model trained on our custom dataset.

  7. Tune hyper-parameters by creating custom config file in "cfg" folder which is inside "darknet" folder. Change the following parameters in yolov3.clf and save it as yolov3-custom.cfg:

    The parameters are chosen by considering the following:

    - max_batches = (# of classes) * 2000 --> [but no less than 4000]
    
    - steps = (80% of max_batches), (90% of max_batches)
    
    - filters = (# of classes + 5) * 3
    
    - random = 1 to random = 0 --> [to speed up training but slightly reduce accuracy]
    

    I chose the following:

    • Training batch = 64
    • Training subdivisions = 16
    • max_batches = 4000, steps = 3200, 3600
    • classes = 1 in the three YOLO layers
    • filters = 18 in the three convolutional layers just before the YOLO layers.
  8. Create "train.txt" and "test.txt" using Generate_Train_Test.py

  9. Train the Custom Object Detector

    !./darknet detector train data/obj.data cfg/yolov3-custom.cfg darknet53.conv.74 -dont_show -map
    
    # Show the graph to review the performance of the custom object detector
    imShow('chart.png')

    The new weights will be stored in backup folder with the name yolov3-custom_best.weights after training.

  10. Check the Mean Average Precision(mAP) of the model

    !./darknet detector map data/obj.data cfg/yolov3-custom.cfg /content/drive/MyDrive/darknet/backup/yolov3-custom_best.weights
  11. Run Your Custom Object Detector

    For testing, set batch and subdivisions to 1.

    # To set our custom cfg to test mode
    %cd cfg
    !sed -i 's/batch=64/batch=1/' yolov3-custom.cfg
    !sed -i 's/subdivisions=16/subdivisions=1/' yolov3-custom.cfg
    %cd ..
    
    # To run custom detector
    # thresh flag sets threshold probability for detection
    !./darknet detector test data/obj.data cfg/yolov3-custom.cfg /content/drive/MyDrive/darknet/backup/yolov3-custom_best.weights /content/drive/MyDrive/Test_Lesion/ISIC_0000000.jpg -thresh 0.3
    
    # Show the predicted image with bounding box and its probability
    imShow('predictions.jpg')

Conclusion

The whole process looks like this:

Summary

Chart (Loss in mAP vs Iteration number):

Loss Chart

Loss Capture

The model was supposed to take 4,000 iterations to complete, however, the rate of decrease in loss is not very significant after 1000 iterations. The model is performing with similar precision even with 3000 fewer iterations which resulted in low training time (saving over 9 hours of compute time) and also there is less chance of it overfitting the data. Hence, the model was stopped pre-maturely just after 1100 iterations.

From the above chart, we can see that the average loss is 0.2545 and the mean average precision(mAP) is over 95% which is extremely good.

Assumption and dependencies

The user is assumed to have access to the ISICs dataset with colored images required for training, as well as its corresponding binary segmentation images.

Dependencies:

  • Google Colab Notebook
  • Python 3.7 on local machine
  • Python libraries: matplotlib, OpenCV2, glob
  • Darknet which is an open source neural network framework written in C and CUDA

References

Redmon, J., & Farhadi, A. (2018). YOLO: Real-Time Object Detection. Retrieved October 28, 2021, from https://pjreddie.com/darknet/yolo/

About the Author

Lalith Veerabhadrappa Badiger
The University of Queensland, Brisbane, Australia
Master of Data Science
Student ID: 46557829
Email ID: [email protected]

Owner
Lalith Veerabhadrappa Badiger
Master of Data Science
Lalith Veerabhadrappa Badiger
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022