Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Overview

Patches Are All You Need? 🤷

This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher Trockman and Zico Kolter.

🔎 New: Check out this repository for training ConvMixers on CIFAR-10.

Code overview

The most important code is in convmixer.py. We trained ConvMixers using the timm framework, which we copied from here.

Update: ConvMixer is now integrated into the timm framework itself. You can see the PR here.

Inside pytorch-image-models, we have made the following modifications. (Though one could look at the diff, we think it is convenient to summarize them here.)

  • Added ConvMixers
    • added timm/models/convmixer.py
    • modified timm/models/__init__.py
  • Added "OneCycle" LR Schedule
    • added timm/scheduler/onecycle_lr.py
    • modified timm/scheduler/scheduler.py
    • modified timm/scheduler/scheduler_factory.py
    • modified timm/scheduler/__init__.py
    • modified train.py (added two lines to support this LR schedule)

We are confident that the use of the OneCycle schedule here is not critical, and one could likely just as well train ConvMixers with the built-in cosine schedule.

Evaluation

We provide some model weights below:

Model Name Kernel Size Patch Size File Size
ConvMixer-1536/20 9 7 207MB
ConvMixer-768/32* 7 7 85MB
ConvMixer-1024/20 9 14 98MB

* Important: ConvMixer-768/32 here uses ReLU instead of GELU, so you would have to change convmixer.py accordingly (we will fix this later).

You can evaluate ConvMixer-1536/20 as follows:

python validate.py --model convmixer_1536_20 --b 64 --num-classes 1000 --checkpoint [/path/to/convmixer_1536_20_ks9_p7.pth.tar] [/path/to/ImageNet1k-val]

You should get a 81.37% accuracy.

Training

If you had a node with 10 GPUs, you could train a ConvMixer-1536/20 as follows (these are exactly the settings we used):

sh distributed_train.sh 10 [/path/to/ImageNet1k] 
    --train-split [your_train_dir] 
    --val-split [your_val_dir] 
    --model convmixer_1536_20 
    -b 64 
    -j 10 
    --opt adamw 
    --epochs 150 
    --sched onecycle 
    --amp 
    --input-size 3 224 224
    --lr 0.01 
    --aa rand-m9-mstd0.5-inc1 
    --cutmix 0.5 
    --mixup 0.5 
    --reprob 0.25 
    --remode pixel 
    --num-classes 1000 
    --warmup-epochs 0 
    --opt-eps=1e-3 
    --clip-grad 1.0

We also included a ConvMixer-768/32 in timm/models/convmixer.py (though it is simple to add more ConvMixers). We trained that one with the above settings but with 300 epochs instead of 150 epochs.

Note: If you are training on CIFAR-10 instead of ImageNet-1k, we recommend setting --scale 0.75 1.0 as well, since the default value of 0.08 1.0 does not make sense for 32x32 inputs.

The tweetable version of ConvMixer, which requires from torch.nn import *:

def ConvMixer(h,d,k,p,n):
 S,C,A=Sequential,Conv2d,lambda x:S(x,GELU(),BatchNorm2d(h))
 R=type('',(S,),{'forward':lambda s,x:s[0](x)+x})
 return S(A(C(3,h,p,p)),*[S(R(A(C(h,h,k,groups=h,padding=k//2))),A(C(h,h,1))) for i in range(d)],AdaptiveAvgPool2d(1),Flatten(),Linear(h,n))
Comments
  • Cifar10 baseline doesn't reach 95%

    Cifar10 baseline doesn't reach 95%

    Hello, I tried convmixer256 on Cifar-10 with the same timm options specified for ImageNet (except the num_classes) and it doesn't go beyond 90% accuracy. Could you please specify the options used for Cifar-10 experiment ?

    opened by K-H-Ismail 13
  • What's new about this model?

    What's new about this model?

    Why “patches” are all you need? Patch embedding is Conv7x7 stem, The body is simply repeated Conv9x9 + Conv1x1, (Not challenging your work, it's indeed very interesting), but just kindly wondering what's new about this model?

    opened by vztu 5
  • Training scheme modifications for small GPUs

    Training scheme modifications for small GPUs

    Hi authors. Your paper has demonstrated a quite intriguing observation. I wish you luck with your submission. Thanks for sharing the code of the submission. When running the code, I got an issue regarding OOM when using the default batch size of 64. In the end I can only run with 8 samples per batch per GPU as my GPUs have only 11GB. I would like to know if you have tried smaller GPUs and achieved the same results. So far, besides learning rate modified according to the linear rule, I haven't made any change yet. If you tried training using smaller GPUs before, could you please share your experience? Thank you very much!

    opened by justanhduc 4
  • Experiments with full convolutional layers instead of patch embedding?

    Experiments with full convolutional layers instead of patch embedding?

    Have the author tried to replace the patch embedding with the just convolution?That is, using 1 stride instead of p?

    With this setting, this is a standard convolution network like MobileNet. I wonder what would be the performance?Is the performance gain of Convmix due to the patch embedding or the depthwise conv layers?

    Very interested in this work, thanks.

    opened by forjiuzhou 2
  • Training time

    Training time

    Hi, first of all thanks for a very interesting paper.

    I would like to know how long did it take you to train the models? I'm trying to train ConvMixer-768/32 using 2xV100 and one epoch is ~3 hours, so I would estimate that full training would take ~= 2 * 3 * 300 ~= 1800 GPU hours, which is insane. Even if you trained with 10 GPUs it would take ~1 week for one experiment to finish. Are my calculations correct?

    opened by bonlime 1
  • padding=same?

    padding=same?

    https://github.com/tmp-iclr/convmixer/blob/1cefd860a1a6a85369887d1a633425cedc2afd0a/convmixer.py#L18 There is an error:TypeError: conv2d(): argument 'padding' (position 5) must be tuple of ints, not str.

    opened by linhaoqi027 1
  • Add Docker environment & web demo

    Add Docker environment & web demo

    Hey @ashertrockman, @tmp-iclr ! wave

    This pull request makes it possible to run your model inside a Docker environment, which makes it easier for other people to run it. We're using an open source tool called Cog to make this process easier.

    This also means we can make a web page where other people can try out your model! View it here: https://replicate.com/locuslab/convmixer and have a look at some Image classification examples we already uploaded.

    By clicking "Claim this model" You'll be able to edit the everything, and we'll feature it on our website and tweet about it too.

    In case you're wondering who I am, I'm from Replicate, where we're trying to make machine learning reproducible. We got frustrated that we couldn't run all the really interesting ML work being done. So, we're going round implementing models we like. blush

    opened by ariel415el 0
  • Add Docker environment & web demo

    Add Docker environment & web demo

    Hey @ashertrockman, @tmp-iclr ! 👋

    This pull request makes it possible to run your model inside a Docker environment, which makes it easier for other people to run it. We're using an open source tool called Cog to make this process easier.

    This also means we can make a web page where other people can try out your model! View it here: https://replicate.com/locuslab/convmixer and have a look at some Image classification examples we already uploaded.

    By clicking "Claim this model" You'll be able to edit the everything, and we'll feature it on our website and tweet about it too.

    In case you're wondering who I am, I'm from Replicate, where we're trying to make machine learning reproducible. We got frustrated that we couldn't run all the really interesting ML work being done. So, we're going round implementing models we like. 😊

    opened by ariel415el 0
  • Fix notebooks

    Fix notebooks

    Hi.

    Fixed errors in pytorch-image-models/notebooks/{EffResNetComparison,GeneralizationToImageNetV2}.ipynb notebooks:

    • added missed pynvml installation;
    • resolved missed imports;
    • resolved errors due to outdated calls of timm library.

    Tested in colab env: "Run all" without any errors.

    opened by amrzv 0
  • CIFAR-10 training settings

    CIFAR-10 training settings

    First of all, thank you for the interesting work. I was experimenting the one with patch size 1 and kernel size 9 with CIFAR-10 with the following training settings:

    --model tiny_convmixer
     -b 64 -j 8 
    --opt adamw 
    --epochs 200 
    --sched onecycle 
    --amp 
    --input-size 3 32 32 
    --lr 0.01 
    --aa rand-m9-mstd0.5-inc1 
    --cutmix 0.5 
    --mixup 0.5 
    --reprob 0.25 
    --remode pixel 
    --num-classes 10
    --warmup-epochs 0
    --opt-eps 1e-3
    --clip-grad 1.0
    --scale 0.75 1.0
    --weight-decay 0.01
    --mean 0.4914 0.4822 0.4465
    --std 0.2471 0.2435 0.2616
    

    I could get only 95.89%. I am supposed to get 96.03% according to Table 4 in the paper. Can you please let me know any setting I missed? Thank you again.

    opened by fugokidi 0
  • Segmentation ConvMixer architecture ?

    Segmentation ConvMixer architecture ?

    I was trying to figure what a Segmentation ConvMixer would look like, and came up with that (residual connection inspired by MultiResUNet). Does it make sense to you ?

    image

    opened by divideconcept 0
  • Request more experiment results to compare to other architecture.

    Request more experiment results to compare to other architecture.

    Hi! This work is pretty interesting, but I think there should are more results like in "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight" as they replace local self-attention with depth-wise convolution in Swin Transformer. Since you conduct an advanced one with a more simple architecture compared to SwinTransformer, so I wonder if ConvMixer can get similar performance on object detection and semantic segmentation.

    opened by LuoXin-s 1
Releases(timm-v1.0)
Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022