Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Overview

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning

Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Geonmo Gu*1, Byungsoo Ko*1, Han-Gyu Kim2 (* Authors contributed equally.)

1@NAVER/LINE Vision, 2@NAVER Clova Speech

Overview

Proxy Synthesis

  • Proxy Synthesis (PS) is a novel regularizer for any softmax variants and proxy-based losses in deep metric learning.

How it works?

  • Proxy Synthesis exploits synthetic classes and improves generalization by considering class relations and obtaining smooth decision boundaries.
  • Synthetic classes mimic unseen classes during training phase as described in below Figure.

Experimental results

  • Proxy Synthesis improves performance for every loss and benchmark dataset.

Getting Started

Installation

  1. Clone the repository locally
$ git clone https://github.com/navervision/proxy-synthesis
  1. Create conda virtual environment
$ conda create -n proxy_synthesis python=3.7 anaconda
$ conda activate proxy_synthesis
  1. Install pytorch
$ conda install pytorch torchvision cudatoolkit=<YOUR_CUDA_VERSION> -c pytorch
  1. Install faiss
$ conda install faiss-gpu cudatoolkit=<YOUR_CUDA_VERSION> -c pytorch
  1. Install requirements
$ pip install -r requirements.txt

Prepare Data

  • Download CARS196 dataset and unzip
$ wget http://imagenet.stanford.edu/internal/car196/car_ims.tgz
$ tar zxvf car_ims.tgz -C ./dataset
  • Rearrange CARS196 directory by following structure
# Dataset structure
/dataset/carDB/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  test/
    class1/
      img3.jpeg
    class2/
      img4.jpeg
# Rearrange dataset structure
$ python dataset/prepare_cars.py

Train models

Norm-SoftMax loss with CARS196

# Norm-SoftMax
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_norm_softmax \
--data=./dataset/carDB --data_name=cars196 \
--dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Norm_SoftMax \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=23.0 --check_epoch=5

PS + Norm-SoftMax loss with CARS196

# PS + Norm-SoftMax
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_PS_norm_softmax \
--data=./dataset/carDB --data_name=cars196 \
 --dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Norm_SoftMax \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=23.0 --check_epoch=5 \
--ps_alpha=0.40 --ps_mu=1.0

Proxy-NCA loss with CARS196

# Proxy-NCA
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_proxy_nca \
--data=./dataset/carDB --data_name=cars196 \
--dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Proxy_NCA \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=12.0 --check_epoch=5

PS + Proxy-NCA loss with CARS196

# PS + Proxy-NCA
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_PS_proxy_nca \
--data=./dataset/carDB --data_name=cars196 \
--dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Proxy_NCA \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=12.0 --check_epoch=5 \
--ps_alpha=0.40 --ps_mu=1.0

Check Test Results

$ tensorboard --logdir=logs --port=10000

Experimental results

  • We report [email protected], RP and MAP performances of each loss, which are trained with CARS196 dataset for 8 runs.

[email protected]

Loss 1 2 3 4 5 6 7 8 Mean ± std
Norm-SoftMax 83.38 83.25 83.25 83.18 83.05 82.90 82.83 82.79 83.08 ± 0.21
PS + Norm-SoftMax 84.69 84.58 84.45 84.35 84.22 83.95 83.91 83.89 84.25 ± 0.31
Proxy-NCA 83.74 83.69 83.62 83.32 83.06 83.00 82.97 82.84 83.28 ± 0.36
PS + Proxy-NCA 84.52 84.39 84.32 84.29 84.22 84.12 83.94 83.88 84.21 ± 0.21

RP

Loss 1 2 3 4 5 6 7 8 Mean ± std
Norm-SoftMax 35.85 35.51 35.28 35.28 35.24 34.95 34.87 34.84 35.23 ± 0.34
PS + Norm-SoftMax 37.01 36.98 36.92 36.74 36.74 36.73 36.54 36.45 36.76 ± 0.20
Proxy-NCA 36.08 35.85 35.79 35.66 35.66 35.63 35.47 35.43 35.70 ± 0.21
PS + Proxy-NCA 36.97 36.84 36.72 36.64 36.63 36.60 36.43 36.41 36.66 ± 0.18

MAP

Loss 1 2 3 4 5 6 7 8 Mean ± std
Norm-SoftMax 25.56 25.56 25.00 24.93 24.90 24.59 24.57 24.56 24.92 ± 0.35
PS + Norm-SoftMax 26.71 26.67 26.65 26.56 26.53 26.52 26.30 26.17 26.51 ± 0.18
Proxy-NCA 25.66 25.52 25.37 25.36 25.33 25.26 25.22 25.04 25.35 ± 0.18
PS + Proxy-NCA 26.77 26.63 26.50 26.42 26.37 26.31 26.25 26.12 26.42 ± 0.20

Performance Graph

  • Below figure shows performance graph of test set during training.

Reference

  • Our code is based on SoftTriple repository (Arxiv, Github)

Citation

If you find Proxy Synthesis useful in your research, please consider to cite the following paper.

@inproceedings{gu2020proxy,
    title={Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning},
    author={Geonmo Gu, Byungsoo Ko, and Han-Gyu Kim},
    booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
    year={2021}
}

License

Copyright 2021-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
NAVER/LINE Vision
Open source repository of Vision, NAVER & LINE
NAVER/LINE Vision
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022