METER: Multimodal End-to-end TransformER

Related tags

Deep LearningMETER
Overview

METER

Code and pre-trained models will be publicized soon.

Citation

@article{dou2021meter,
  title={An Empirical Study of Training End-to-End Vision-and-Language Transformers},
  author={Dou, Zi-Yi and Xu, Yichong and Gan, Zhe and Wang, Jianfeng and Wang, Shuohang and Wang, Lijuan and Zhu, Chenguang and Peng, Nanyun and Liu, Zicheng and Zeng, Michael},
  journal={arXiv},
  year={2021},
  url={https://arxiv.org/abs/2111.02387},
}

Acknowledgements

The code is based on ViLT and some of the code is borrowed from CLIP and Swin-Transformer.

Comments
  • questions about VQA

    questions about VQA

    Hi, could you share the VQAv2 result fine-tuning with image resolution of 384, the result implemented by me is 76.52 and it is based on your checkpoint pretrained on COCO, SBU, VG, CC3M.

    opened by Henry9805 20
  • Some questions for the paper

    Some questions for the paper

    What is the difference between the score in Table 5 and Table 8? 77.19 in Table 5 results on test-dev set of VQAv2, and, 77.68 in Table 8 results on test-dev set of VQAv2.

    opened by wanng-ide 17
  • How much is the per gpu batch size?

    How much is the per gpu batch size?

    How much is the per gpu batch size? total batchsize is 4096, GPU num is 8, so per gpu batch size is 512? But I use A100 GPU, the batch size only can be set 16?

    opened by qiao1025566574 5
  • pretraining task

    pretraining task

    Hello, the author, great work! I'm curious whether you have tried to add Image Text Contrast Learning in the pretraining task? Because in the ALBEF paper, they reported that the ITC task had a great impact on the experimental results.

    opened by mactavish91 4
  • Inference with Fine-tuned SNLI Model

    Inference with Fine-tuned SNLI Model

    Hi,

    Thank you for the great work and the fine-tuned models, but I just wanted to ask how I should go about running inference with the fine-tuned model. Currently, I run into this error in my notebook:

    1 model = METERTransformerSS(cfg)
    ----> 2 model.load_state_dict(torch.load("/content/meter_clip16_288_roberta_snli.ckpt")['state_dict'])
    
    [/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in load_state_dict(self, state_dict, strict)
       1050         if len(error_msgs) > 0:
       1051             raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    -> 1052                                self.__class__.__name__, "\n\t".join(error_msgs)))
       1053         return _IncompatibleKeys(missing_keys, unexpected_keys)
       1054 
    
    RuntimeError: Error(s) in loading state_dict for METERTransformerSS:
    	Unexpected key(s) in state_dict: "vit_model.token_embedding.weight". 
    	size mismatch for vit_model.visual.positional_embedding: copying a param with shape torch.Size([577, 768]) from checkpoint, the shape in current model is torch.Size([197, 768]).
    

    I wonder if this is due to how I configure the model or not, is there a specific way I should create the config for inference? Thank you in advance.

    opened by sramshetty 4
  • The model meter_clip16_288_roberta_flickr.ckpt is inconsistent with the network weight parameter dimension

    The model meter_clip16_288_roberta_flickr.ckpt is inconsistent with the network weight parameter dimension

    Hi, Thank you for your excellent work, may I use this model "METER-CLIP16-RoBERTa fine-tuned on Flickr30k IR/TR (resolution: 384^2)" as meter_clip16_288_roberta_flickr.ckpt, why does the code report this error showing inconsistent dimensions, thank you answer my question. Y88) J7_592_AJQR}4LBP4W

    opened by attutude 4
  • Unable to train models faster with more gpus

    Unable to train models faster with more gpus

    Hi, I am facing an issue where, on increasing the number of gpus and nodes, the number of steps for each epoch doesnot change. for eg if I run

    python run.py with data_root=/data/datasets/meter_data_combined num_gpus=4 num_nodes=8 task_mlm_itm_clip_bert per_gpu_batchsize=64 clip16 text_roberta image_size=224 precision=16 datasets='["vg"]'

    the number of steps per epoch is nearly 150k. I observe that the number of steps is 150k when num_gpus=1 num_nodes=1, and when num_gpus=4 num_nodes=8. I made sure that all gpus were being utilized when I set num_gpus=4 num_nodes=8. I also observe that while using num_gpus=4 num_nodes=8, the time for each epoch is ~160 hours in my case, while it is ~30 hours if I set num_gpus=1 num_nodes=1.

    Is there any suggestion that you have for this problem?

    opened by HarmanDotpy 3
  • GPU OOM when pretraining

    GPU OOM when pretraining

    HI, I'm trying to pre-train the METER by using 8 A100 GPUS with the recommended config:

    python run.py with num_gpus=8 num_nodes=1 task_mlm_itm_clip_bert per_gpu_batchsize=32 clip16 text_roberta image_size=288
    

    but the GPU OOM occurred.

    So what is the extract per_gpu_batchsize? And how can I pre-train the model in about 8 days as mentioned in the paper.

    By the way, will the mixed precision training (precision=16) cause a performance drop?

    Many thanks!

    opened by hi-zhenyu 3
  • The training set of using different pretraining datasets.

    The training set of using different pretraining datasets.

    When I tried to reproduce the results in Table 17, I found that using the default learning rate and only using the coco pertaining dataset worked extremely poorly on downstream tasks.

    So, I would like to ask, do you set different training parameters (eg, lr, bs, max epoch, etc) for different pre-training datasets?

    opened by ShiYaya 2
  • question about the pre-trained weights

    question about the pre-trained weights

    Dear authors, Thanks for the great work! I have downloaded the pre-trained weights of ViT-B-16(224)+RoBERTa checkpoint from https://github.com/zdou0830/METER/releases/download/checkpoint2/meter_clip16_224_roberta_pretrain.ckpt, and found that the last layer of the visual encoder "vit_model.visual.transformer.resblocks.11..." is not included in the ckpt file? Did I miss something? Could you please help me to check it?

    opened by Junction4Nako 2
  • About license

    About license

    Thanks for the great work! The codebase is released under an MIT license (https://github.com/zdou0830/METER/blob/main/LICENSE) and an Apache License (https://github.com/zdou0830/METER/blob/main/ViLT_LICENSE).

    I want to know whether the pre-trained models are also released under the same license? Thanks.

    opened by WangWenhao0716 2
  • Pretrained weights of CLIP-ViT-224/32

    Pretrained weights of CLIP-ViT-224/32

    Hi,

    Thanks for the code! I wonder if you plan to release the pretrained weights of CLIP-ViT-224/32 (e.g., METER-CLIP32-RoBERTa (resolution: 224^2) pre-trained on GCC+SBU+COCO+VG)? It would be helpful for those who want to play with your model but don't have enough computational resources. Thanks!

    opened by bfshi 0
  • The last checkpoint or the best one on the Val split?

    The last checkpoint or the best one on the Val split?

    Hi, I'm confused by the testing checkpoint in the downstream tasks.

    I wonder which checkpoint should I use to evaluate, the last ckpt or the saved top-1 on the val split?

    opened by hi-zhenyu 3
  • Why the test results are different using same data?

    Why the test results are different using same data?

    I used pl.seed_everything to set seed,

    pl.seed_everything(_config["seed"], workers=True)
    

    but I still got different result when I tested flickr30k Image2Text Retrieval task on the model trained by myself. First:

    (tensor(0.7382),  tensor(0.9274), tensor(0.9638), tensor(0.8965), tensor(0.9814), tensor(0.9941)) 0)
    

    Second:

    (tensor(0.7366), tensor(0.9294), tensor(0.9656), tensor(0.8975), tensor(0.9814), tensor(0.9941)) 0
    

    I ensure the config files are same. Do you meet this problem?

    opened by qiao1025566574 1
  • ValueError and AttributeError

    ValueError and AttributeError

    Hi, I‘m trying to making "run.py" work for Pre-training, but I got ValueError and AttributeError, and I didn't find a solution, can you help me to check it? Thank you very much!

    Traceback (most recent call last): File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/experiment.py", line 312, in run_commandline return self.run( File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/experiment.py", line 276, in run run() File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/run.py", line 238, in call self.result = self.main_function(*args) File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/config/captured_function.py", line 42, in captured_function result = wrapped(*args, **kwargs) File "run.py", line 20, in main dm = MTDataModule(_config, dist=True) File "/home/T3090U3/PycharmProjects/hxf/METER/METER-main/meter/datamodules/multitask_datamodule.py", line 19, in init self.dm_dicts = {key: _datamoduleskey for key in datamodule_keys} File "/home/T3090U3/PycharmProjects/hxf/METER/METER-main/meter/datamodules/multitask_datamodule.py", line 19, in self.dm_dicts = {key: _datamoduleskey for key in datamodule_keys} File "/home/T3090U3/PycharmProjects/hxf/METER/METER-main/meter/datamodules/coco_caption_karpathy_datamodule.py", line 7, in init super().init(*args, **kwargs) File "/home/T3090U3/PycharmProjects/hxf/METER/METER-main/meter/datamodules/datamodule_base.py", line 60, in init self.tokenizer = get_pretrained_tokenizer(tokenizer) File "/home/T3090U3/PycharmProjects/hxf/METER/METER-main/meter/datamodules/datamodule_base.py", line 25, in get_pretrained_tokenizer return RobertaTokenizer.from_pretrained(from_pretrained) File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/transformers/tokenization_utils_base.py", line 1672, in from_pretrained resolved_vocab_files[file_id] = cached_path( File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/transformers/file_utils.py", line 1271, in cached_path output_path = get_from_cache( File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/transformers/file_utils.py", line 1494, in get_from_cache raise ValueError( ValueError: Connection error, and we cannot find the requested files in the cached path. Please try again or make sure your Internet connection is on.

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "run.py", line 16, in def main(_config): File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/experiment.py", line 190, in automain self.run_commandline() File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/experiment.py", line 347, in run_commandline print_filtered_stacktrace() File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/utils.py", line 493, in print_filtered_stacktrace print(format_filtered_stacktrace(filter_traceback), file=sys.stderr) File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/utils.py", line 528, in format_filtered_stacktrace return "".join(filtered_traceback_format(tb_exception)) File "/home/T3090U3/anaconda3/envs/hxf/lib/python3.8/site-packages/sacred/utils.py", line 568, in filtered_traceback_format current_tb = tb_exception.exc_traceback AttributeError: 'TracebackException' object has no attribute 'exc_traceback'

    opened by huhuhud 3
  • Pre-trained models for the Merged Attention Model?

    Pre-trained models for the Merged Attention Model?

    Thanks for the amazing repository. The code is really clean. If I understand correctly, the current implementation is co-attention model, and same for pre-trained weights. I wanted to know if you had plans to release the merge attention model weights as well! Thanks in advance!

    opened by TheShadow29 1
Owner
Zi-Yi Dou
Zi-Yi Dou (窦子轶).
Zi-Yi Dou
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
Veri Setinizi Yolov5 Formatına Dönüştürün

Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme

Kadir Nar 4 Aug 22, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023