Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

Related tags

Deep LearningRTK-PAD
Overview

RTK-PAD

This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE Transactions on Cybernetics

Fingerprint Presentation Attack Detector Using Global-Local Model (IEEE TCYB)

Requirements

  • numpy>=1.19.2
  • Pillow>=8.3.2
  • pytorch>=1.6.0
  • torchvision>=0.7.0
  • tqdm>=4.62.2
  • scikit-image>=0.18.3
  • scikit-learn>= 0.24.2
  • matplotlib>=3.4.3
  • opencv-python>= 4.5.3

Datasets

The proposed method is evaluated on a publicly-available benchmark, i.e. LivDet 2017, and you can download such dataset through link

Results

Usage

The RTK-PAD method is trained through three steps:

  • Data Preparation

    Generate the image list:

    python datafind.py \
    --data_path {Your path to save LivDet2017}
    

    For example, python train_local_shuffling.py --data_path /data/fingerprint/2017 And then you can get data_path.txt to establish a Dataset Class() provided by pytorch.

  • Pre-trained Model Preparation

    RTK-PAD consists of Global Classifier and Local Classifier and we use two different initializations for them.

    For Global Classifier, the pre-trained model is carried on ImageNet, and you can download the weights from Link

    When it comes to Local Classifier, we propose a self-supervised learning based method to drive the model to learn local patterns. And you can obtain such initialization by

    python train_local_shuffling.py \
    --sensor [D/G] \
    

    D refers to DigitalPersona and G is GreenBit. Since Orcanthus is with the different sizes of the images, we have a specific implementation for such case, which is hard to merge into this code.

  • Training models

    python train_main.py \
    --train_sensor [D/G] \
    --mode [Patch/Whole] \
    --savedir {Your path to save the trained model} \
    
    

Evaluation

For evaluation, we can obtain RTK-PAD inference by

python evaluation.py \
--test_sensor [D/G]
--global_model_path {Your path to save the global classifier})
--patch_model_path {Your path to save the local classifier}
--patch_num 2 \

Citation

Please cite our work if it's useful for your research.

  • BibTex:
@article{liu2021fingerprint,
  title={Fingerprint Presentation Attack Detector Using Global-Local Model},
  author={Liu, Haozhe and Zhang, Wentian and Liu, Feng and Wu, Haoqian and Shen, Linlin},
  journal={IEEE Transactions on Cybernetics},
  year={2021},
  publisher={IEEE}
}
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023