[ICML 2021] A fast algorithm for fitting robust decision trees.

Overview

GROOT: Growing Robust Trees

Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust against user-specified adversarial examples. The algorithm closely resembles algorithms used for fitting normal decision trees (i.e. CART) but changes the splitting criterion and the way samples propagate when creating a split.

This repository contains the module groot that implements GROOT as a Scikit-learn compatible classifier, an adversary for model evaluation and easy functions to import datasets. For documentation see https://groot.cyber-analytics.nl

Simple example

To train and evaluate GROOT on a toy dataset against an attacker that can move samples by 0.5 in each direction one can use the following code:

from groot.adversary import DecisionTreeAdversary
from groot.model import GrootTreeClassifier

from sklearn.datasets import make_moons

X, y = make_moons(noise=0.3, random_state=0)
X_test, y_test = make_moons(noise=0.3, random_state=1)

attack_model = [0.5, 0.5]
is_numerical = [True, True]
tree = GrootTreeClassifier(attack_model=attack_model, is_numerical=is_numerical, random_state=0)

tree.fit(X, y)
accuracy = tree.score(X_test, y_test)
adversarial_accuracy = DecisionTreeAdversary(tree, "groot").adversarial_accuracy(X_test, y_test)

print("Accuracy:", accuracy)
print("Adversarial Accuracy:", adversarial_accuracy)

Installation

groot can be installed from PyPi: pip install groot-trees

To use Kantchelian's MILP attack it is required that you have GUROBI installed along with their python package: python -m pip install -i https://pypi.gurobi.com gurobipy

Specific dependency versions

To reproduce our experiments with exact package versions you can clone the repository and run: pip install -r requirements.txt

We recommend using virtual environments.

Reproducing 'Efficient Training of Robust Decision Trees Against Adversarial Examples' (article)

To reproduce the results from the paper we provide generate_k_fold_results.py, a script that takes the trained models (from JSON format) and generates tables and figures. The resulting figures generate under /out/.

To not only generate the results but to also retrain all models we include the scripts train_kfold_models.py and fit_chen_xgboost.py. The first script runs the algorithms in parallel for each dataset then outputs to /out/trees/ and /out/forests/. Warning: the script can take a long time to run (about a day given 16 cores). The second script train specifically the Chen et al. boosting ensembles. /out/results.zip contains all results from when we ran the scripts.

To experiment on image datasets we have a script image_experiments.py that fits and output the results. In this script, one can change the dataset variable to 'mnist' or 'fmnist' to switch between the two.

The scripts summarize_datasets.py and visualize_threat_models.py output some figures we used in the text.

Implementation details

The TREANT implementation (groot.treant.py) is copied almost completely from the authors of TREANT at https://github.com/gtolomei/treant with small modifications to better interface with the experiments. The heuristic by Chen et al. runs in the GROOT code, only with a different score function. This score function can be enabled by setting chen_heuristic=True on a GrootTreeClassifier before calling .fit(X, y). The provably robust boosting implementation comes almost completely from their code at https://github.com/max-andr/provably-robust-boosting and we use a small wrapper around their code (groot.provably_robust_boosting.wrapper.py) to use it. When we recorded the runtimes we turned off all parallel options in the @jit annotations from the code. The implementation of Chen et al. boosting can be found in their own repo https://github.com/chenhongge/RobustTrees, from whic we need to compile and copy the binary xgboost to the current directory. The script fit_chen_xgboost.py then calls this binary and uses the command line interface to fit all models.

Important note on TREANT

To encode L-infinity norms correctly we had to modify TREANT to NOT apply rules recursively. This means we added a single break statement in the treant.Attacker.__compute_attack() method. If you are planning on using TREANT with recursive attacker rules then you should remove this statement or use TREANT's unmodified code at https://github.com/gtolomei/treant .

Contact

For any questions or comments please create an issue or contact me directly.

Comments
  • Reproducing results from the article, issue with runtimes.csv

    Reproducing results from the article, issue with runtimes.csv

    Hello! I am trying to reproduce results from the article, and I can't figure out certain problem. First I am trying to run train_kfold_models, but the code always ouputs an error: "ImportError: cannot import name 'GrootTree' from 'groot.model'". Is there something wrong with the .py file I am trying to run, or is this problem something that doesn't occur to you and everyone else (-->something wrong on computer or files or environment)?

    Onni Mansikkamäki

    opened by OnniMansikkamaki 3
  • is_numerical argument GrootTreeClassifier

    is_numerical argument GrootTreeClassifier

    Running the example code on the make moons data in the README I get:

    Traceback (most recent call last):
      File "/home/.../groot_test.py", line 11, in <module>
        tree = GrootTreeClassifier(attack_model=attack_model, is_numerical=is_numerical, random_state=0)
    TypeError: __init__() got an unexpected keyword argument 'is_numerical'
    

    Leaving out the argument and having this line instead: tree = GrootTreeClassifier(attack_model=attack_model, random_state=0) results in this error:

    Traceback (most recent call last):
      File "/home/.../groot_test.py", line 15, in <module>
        adversarial_accuracy = DecisionTreeAdversary(tree, "groot").adversarial_accuracy(X_test, y_test)
      File "/home/.../venv/lib/python3.9/site-packages/groot/adversary.py", line 259, in __init__
        self.is_numeric = self.decision_tree.is_numerical
    AttributeError: 'GrootTreeClassifier' object has no attribute 'is_numerical'
    

    I'm guessing the code got an update, but the readme didn't. Or I made a stupid mistake, also very possible.

    opened by laudv 2
  • Reproducing result from paper

    Reproducing result from paper

    Hello! I am trying to reproduce the results from the paper. I am struggling to find, where these files: generate_k_fold_results.py, train_kfold_models.py, fit_chen_xgboost.py, image_experiments.py, summarize_datasets.py and visualize_threat_models.py are provided?

    Onni Mansikkamäki

    opened by OnniMansikkamaki 0
  • Regression decision trees and random forests

    Regression decision trees and random forests

    This PR adds GROOT decision trees and random forests that use the adversarial sum of absolute errors to make splits. It also adds new tests, speeds them up and updates the documentation.

    opened by daniel-vos 0
  • Add regression, tests and refactor into base class

    Add regression, tests and refactor into base class

    This PR adds a regression GROOT tree based on the adversarial sum of absolute errors, more tests and refactors GROOT trees into a base class (BaseGrootTree) with subclasses GrootTreeClassifier and GrootTreeRegressor extending it.

    opened by daniel-vos 0
Releases(v0.0.1)
Owner
Cyber Analytics Lab
@ Delft University of Technology
Cyber Analytics Lab
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
LIAO Shuiying 6 Dec 01, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022