Code to produce syntactic representations that can be used to study syntax processing in the human brain

Overview

Can fMRI reveal the representation of syntactic structure in the brain?

The code base for our paper on understanding syntactic representations in the human brain using naturalistic fMRI data. We explain how to reproduce our results in detail and also point to our preprocessed data. Please cite this work if you use our code:

@inproceedings{reddywehbe2021,
  title={Can fMRI reveal the representation of syntactic structure in the brain?},
  author={Reddy, Aniketh Janardhan and Wehbe, Leila},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Dependencies

This work used the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC). All of the results were obtained using a machine with 14 CPU cores, 128 GB RAM and a CUDA-capable GPU. Our analyses were performed using iPython notebooks with Python3.6 kernels. We have tested this code on CentOS Linux 8. We recommend using a Linux-based environment to run our code. The analysis pipeline is fairly compute-intensive and it took us about 4 days to run it. Expect the runtime to be significantly longer if you are using a system with less than 8 cores. Our code does not make very heavy use of a GPU. Thus, an entry level graphics card such as an Nvidia RTX 2060 should be sufficient. It is possible to run the code even without a GPU but it might take longer to generate some features.

The Python packages needed to run our code can be installed by running the install_python_dependencies.sh script:

bash install_python_dependencies.sh

You will also have to install FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) which is needed to transform results to MNI space.

The graph embeddings-based features used in our paper are computed using sub2vec [1]. Please download the code written by the original authors for this algorithm from here http://people.cs.vt.edu/~bijaya/codes/sub2vec.zip and extract the code to a folder called sub2vec.

Clone the code for the incremental top-down parser [2, 3] from this repo - https://github.com/roarkbr/incremental-top-down-parser to the folder containing our code. This is needed to generate the syntactic surprisal and InConTreGE features. This code must be in a folder called incremental-top-down-parser.

Finally, download the ROIs created by Fedorenko et al. (2010) [4] from here - https://osf.io/2gaw3/ and extract the files to the folder containing our code. These are required to create the image of the ROIs.

Reproducing Our Results

The preprocessed fMRI data we use have been uploaded here - https://drive.google.com/file/d/1aYEZZSyrlo0UqswDBUiGzE3kGl3RcCn8/view?usp=sharing. Please download the file and extract it to the directory in which the code has been cloned. The data should be saved in a folder called sub_space_data.

Note that we cannot provide the anatomical data needed to visualize subject space results to protect the anonymity of the subjects. However, we provide the binary masks and transforms needed to transform subject space results to MNI space. These were obtained using pycortex.

Also, we provide all of the main files needed to generate our figures and tables since running our full pipeline can take a long time. These include the features we generate (in the features folder), the R^2 scores and the significance testing results (in the predictions and predictions_mni folders) among others.

Please follow these steps to reproduce our results using this codebase:

  1. Upon extracting the aforementioned file, the preprocessed fMRI data can be found in the folder called sub_space_data.

  2. The text which is presented to the subjects is in the chapter9.txt file. The string on each line of the file is sequentially presented (there are 5176 lines). The + symbol is a fixation cross that is periodically shown to the subjects. Since we use word-level features, all of the files which contain these features are numpy arrays of the form (5176, number of feature dimensions). The rows which correspond to the presentation of a + are filled with zeros.

  3. Generate the complexity metrics - Node Count (NC), Syntactic Surprisal (SS), Word Frequency (WF) and Word Length (WL), for every presented word by running the generate_node_count.ipynb, generate_syntactic_surprisal.ipynb, generate_word_frequencies_and_word_lengths.ipynb notebooks respectively. The outputs are stored in the features folder as node_count.npy, syntactic_surprisal.npy, word_frequency.npy and word_length.npy.

  4. Generate the POS tags of the presented words using the generate_pos_tags.ipynb notebook. The output is stored in the features folder as pos_tags.npy.

  5. Generate the DEP tags of the presented words using the generate_dep_tags.ipynb notebook. The output is stored in the features folder as dep_tags.npy.

  6. Generate the punctuation-based feature space by running the generate_punct.ipynb notebook. This feature space is extracted from POS and DEP tags since it is just a subset of these features. The output is stored in the features folder as punct_final.npy.

  7. In order to generate the ConTreGE Comp vectors, we first need to generate the subtrees to be encoded. This is done by running the generate_contrege_comp_subtrees.ipynb notebook. These subtrees are stored in the contrege_comp_subtrees folder. Then, we run the generate_contrege_comp_vectors_using_sub2vec.ipynb notebook to generate 5 sets of ConTreGE Comp vectors using sub2vec. These are stored in the features folder (called as contrege_comp_set_0.npy, contrege_comp_set_1.npy, contrege_comp_set_2.npy, contrege_comp_set_3.npy, contrege_comp_set_4.npy). We include all of the sets we generated and used in our analyses since these vectors are stochastic and can vary from run to run.

  8. We need to follow steps similar to those used to generate ConTreGE Comp so as to generate the ConTreGE Incomp vectors. We first need to generate the subtrees to be encoded by running the generate_contrege_incomp_subtrees.ipynb notebook. These subtrees are stored in the contrege_incomp_subtrees folder. Then, we run the generate_contrege_incomp_vectors_using_sub2vec.ipynb notebook to generate 5 sets of ConTreGE Incomp vectors using sub2vec. These are stored in the features folder (called as contrege_incomp_set_0.npy, contrege_incomp_set_1.npy, contrege_incomp_set_2.npy, contrege_incomp_set_3.npy, contrege_incomp_set_4.npy). Again, we include all of the sets we generated and used in our analyses since these vectors are also stochastic and can vary from run to run.

  9. The InConTreGE vectors are generated using the partial parses output by the aforementioned incremental top-down parser. To get the subtrees which are representative of these partial parses, run the generate_incontrege_subtrees.ipynb notebook. Then, run the generate_incontrege_vectors_using_sub2vec.ipynb notebook to generate 5 sets of InConTreGE vectors using sub2vec. These are stored in the features folder (called as incontrege_set_0.npy, incontrege_set_1.npy, incontrege_set_2.npy, incontrege_set_3.npy, incontrege_set_4.npy). We include all of the sets we generated and used in our analyses since these vectors are stochastic and can vary from run to run.

  10. To generate the BERT embeddings-based semantic features, run the generate_incremental_bert_embeddings.ipynb notebook. The output is stored in the features folder as incremental_bert_embeddings_layer12_PCA_dims_15.npy.

  11. Now that all of the individual features are ready, we can build the hierarchical feature groups used in the paper. Run the generate_hierarchical_feature_groups.ipynb notebook to build them. Note that the punctuation-based feature is not explicitly added to feature groups that contain POS and DEP tags. This is because POS and DEP tags already contain the punctuation feature in them. This step generates the following important files in the features folder:

    1. node_count_punct.npy = {NC, PU}
    2. syntactic_surprisal_punct.npy = {SS, PU}
    3. word_frequency_punct.npy = {WF, PU}
    4. word_length_punct.npy = {WL, PU}
    5. all_complexity_metrics_punct.npy = {CM, PU}
    6. pos_dep_tags_all_complexity_metrics.npy = {PD, CM, PU}
    7. contrege_comp_set_X_pos_dep_tags_all_complexity_metrics.npy = {CC, PD, CM, PU}
    8. contrege_incomp_set_X_pos_dep_tags_all_complexity_metrics.npy = {CI, PD, CM, PU}
    9. incontrege_set_X_pos_dep_tags_all_complexity_metrics.npy = {INC, PD, CM, PU}
    10. bert_PCA_dims_15_contrege_incomp_set_X_pos_dep_tags_node_count.npy = {BERT, CI, PD, CM, PU}
  12. We can then start training Ridge regression models and using these trained models to make predictions (training and prediction is done in a cross validated fashion as described in the paper). Run the predictions_master_script.ipynb notebook in order to generate all of the predictions. Predictions made using each feature group will be stored in separate subfolders in the predictions folder and will be in subject space (these subfolders will be named after the numpy files used to make the predictions). The R^2 scores for each subject and feature group are stored in the files of the form SubjectName_r2s.npy.

  13. The prediction results obtained using the ConTreGE Comp, ConTreGE Incomp and InConTreGE vectors need to be averaged across the 5 sets. Run the aggregate_contrege_results_across_sets.ipynb notebook to do this. The script outputs the averaged results to subfolders that start with the aggregated prefix in the predictions folder.

  14. After obtaining the predictions, we can start testing our results for significance. First, we test the significance of the R^2 scores obtained using punctuations only by performing a permutation test. This test is run by executing the significance_testing_permutation.ipynb notebook. Running this notebook will generate files of the form SubjectName_sig.npy in the punct_final subfolder of predictions. These subject space files indicate voxels for which the R^2 scores produced using punctuations are significant.

  15. Then, we test for the significance of the differences in R^2 scores between consecutive hierarchical feature groups by running the difference_significance_testing_bootstrap.ipynb notebook. This generates subfolders of the form {features in group 1}_diff_{features in group 2} that contain files of the form SubjectName_sig_boot.npy in the predictions folder. These subject space files indicate voxels for which the difference in R^2 scores between group 1 and group 2 (= R^2_group1 - R^2_group2) are significant. Note that:

    1. node_count_punct_diff_punct_final = {NC, PU} - {PU}
    2. syntactic_surprisal_punct_diff_punct_final = {SS, PU} - {PU}
    3. word_frequency_punct_diff_punct_final = {WF, PU} - {PU}
    4. word_length_punct_diff_punct_final = {WL, PU} - {PU}
    5. all_complexity_metrics_punct_diff_punct_final = {CM, PU} - {PU}
    6. pos_dep_tags_all_complexity_metrics_diff_all_complexity_metrics_punct = {PD, CM, PU} - {CM, PU}
    7. aggregated_contrege_comp_pos_dep_tags_all_complexity_metrics_diff_pos_dep_tags_all_complexity_metrics = {CC, PD, CM, PU} - {PD, CM, PU}
    8. aggregated_contrege_incomp_pos_dep_tags_all_complexity_metrics_diff_pos_dep_tags_all_complexity_metrics = {CI, PD, CM, PU} - {PD, CM, PU}
    9. aggregated_incontrege_pos_dep_tags_all_complexity_metrics_diff_pos_dep_tags_all_complexity_metrics = {INC, PD, CM, PU} - {PD, CM, PU}
    10. aggregated_bert_PCA_dims_15_contrege_incomp_pos_dep_tags_node_count_diff_aggregated_contrege_incomp_pos_dep_tags_node_count = {BERT, CI, PD, CM, PU} - {CI, PD, CM, PU}
  16. False Discovery Rate correction is then performed for all of the significance tests as described in the paper by running the perform_FDR_correction.ipynb notebook. For the punctuation feature, we obtain files of the form SubjectName_sig_group_corrected.npy and for all the other tests, files of the form SubjectName_sig_bootstrap_group_corrected.npy are obtained. These files are stored in the same subfolders of the predictions folder that contain the uncorrected p-val files.

  17. To generate the brain maps shown in the paper, we need to transform the significance testing results and R^2 scores that are in subject space to MNI space. Run the mni_transform.ipynb notebook to perform this transformation. The transformed files are saved in the predictions_mni folder. Note that running the aforementioned notebook requires FSL to be installed.

  18. Finally, running the create_figures.ipynb notebook generates the figures in our paper in a folder called figures. R^2+ figures are stored in r2plus_figures subfolder and the significance testing results are stored in the sig_figures subfolder. blank_plot_of_rois.png is a plot showing the ROIs and the ROI analysis figures are saved in the roi_figures subfolder.

The syntactic information analysis can be carried out by following these steps:

  1. Run the generate_ancestor_data_for_information_analysis.ipynb notebook to generate numpy files that encode the ancestor information. These files are stored in the ancestor_information_analysis folder.

  2. Then run the syntactic_information_analysis.ipynb notebook to perform the prediction analysis. The notebook generates a CSV file called final_syntactic_information_analysis_results.csv that contains the prediction accuracies and the associated p-vals. The last cell of the notebook shows the label distribution for each level.

To test that the BERT embeddings are better predictors of GloVe-based semantic vectors (extracted from spaCy) than the ConTreGE vectors, we first need to extract the GloVe-based semantic vectors by running the generate_spacy_embeddings.ipynb notebook. Then run the compare_glove_vectors_predictivity.ipynb notebook to train and test RidgeCV models that predict the GloVe-based semantic vectors. The outputs of the last two cells show that BERT embeddings are much predictors of these GloVe-based semantic vectors when compared to the ConTreGE vectors.

References

  1. Adhikari, Bijaya, et al. "Sub2vec: Feature learning for subgraphs." Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham, 2018.

  2. Roark, Brian. "Probabilistic top-down parsing and language modeling." Computational linguistics 27.2 (2001): 249-276.

  3. Roark, Brian, et al. "Deriving lexical and syntactic expectation-based measures for psycholinguistic modeling via incremental top-down parsing." Proceedings of the 2009 conference on empirical methods in natural language processing. 2009.

  4. Fedorenko, Evelina, et al. "New method for fMRI investigations of language: defining ROIs functionally in individual subjects." Journal of neurophysiology 104.2 (2010): 1177-1194.

Owner
Aniketh Janardhan Reddy
Computer Science PhD Student, UC Berkeley
Aniketh Janardhan Reddy
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022