FedML: A Research Library and Benchmark for Federated Machine Learning

Overview

FedML: A Research Library and Benchmark for Federated Machine Learning

📄 https://arxiv.org/abs/2007.13518

Roadmap Python3 PyTorch Travis Contributors

News

2021-02-01 (Award): #NeurIPS 2020# FedML won Best Paper Award at NeurIPS Federated Learning workshop 2020

2020-12-12 (Conference Presentation): #NeurIPS 2020# We gave a contributed talk at NeurIPS 2020. Please check the video here: https://www.youtube.com/watch?v=93SETZGZMyI

The slides of this presentation are also open source (yes, we open source everything of FedML!): https://docs.google.com/presentation/d/1ykAQ_GpzEoRVJeMr1hXUHlJSBpzW2P6Wuzud8RTF0oo/edit#slide=id.p

2020-11-27 (System): FedML architecture has evolved into an ecosystem including multiple GitHub repositories. With FedML at its core, we can support more advanced FL applications and platforms.
FedML: https://github.com/FedML-AI/FedML

FedNLP: https://github.com/FedML-AI/FedNLP (We plan to release at the end of March 2021. Please stay tuned!)

FedML-IoT: https://github.com/FedML-AI/FedML-IoT

FedML-Server: https://github.com/FedML-AI/FedML-Server

FedML-Mobile: https://github.com/FedML-AI/FedML-Mobile

2020-11-24 (Publication): We are thrilled to share that the short version of our FedML white paper has been accepted to NeurIPS 2020 workshop. Thanks for reviewers from NeurIPS, supporting us to do a presentation there.

2020-11-05 (System): Do you want to run federated learning on IoT devices? FedML architecture design can smoothly transplant the distributed computing code to the IoT platform. FedML can support edge training on two IoT devices: Raspberry Pi 4 and NVIDIA Jetson Nano!!! Please check it out here: https://github.com/FedML-AI/FedML/blob/master/fedml_iot/README.md

2020-10-28 (Algorithms) : We released more advanced federated optimization algorithms, more than just FedAvg! http://doc.fedml.ai/#/algorithm-reference-implementation

2020-10-26 (Publication) : V2 of our white paper is released. Please check out here: https://arxiv.org/pdf/2007.13518.pdf

2020-10-07 (Model and Dataset) : Datasets + Models ALL IN ONE!!! FedML supports comprehensive research-oriented FL datasets and models:

  • cross-device CV: Federated EMNIST + CNN (2 conv layers)
  • cross-device CV: CIFAR100 + ResNet18 (Group Normalization)
  • cross-device NLP: shakespeare + RNN (bi-LSTM)
  • cross-device NLP: stackoverflow (NWP) + RNN (bi-LSTM)
  • cross-silo CV: CIFAR10, CIFAR100, CINIC10 + ResNet
  • cross-silo CV: CIFAR10, CIFAR100, CINIC10 + MobileNet
  • linear: MNIST + Logistic Regression

Please check create_model(args, model_name, output_dim) and load_data(args, dataset_name) at fedml_experiments/distributed/fedavg/main_fedavg.py for details.

We will support more advanced models and datasets, please stay tuned!


2020-09-30 (Publication): We maintained a comprehensive publication list of Federated Learning here: https://github.com/chaoyanghe/Awesome-Federated-Learning


2020-09-28 (Publication): Authors of FedML (https://fedml.ai) have 7 papers that got accepted to NeurIPS 2020. Big congratulations!!! Here is the publication list: https://github.com/FedML-AI/FedML/blob/master/publications.md. Highlighted ones are related to large-scale distributed learning and federated learning.

What is Federated Learning?

Please read this long vision paper Advances and Open Problems in Federated Learning.

This publication list is also helpful: https://github.com/chaoyanghe/Awesome-Federated-Learning

Introduction

Federated learning is a rapidly growing research field in the machine learning domain. Although considerable research efforts have been made, existing libraries cannot adequately support diverse algorithmic development (e.g., diverse topology and flexible message exchange), and inconsistent dataset and model usage in experiments make fair comparisons difficult. In this work, we introduce FedML, an open research library and benchmark that facilitates the development of new federated learning algorithms and fair performance comparisons. FedML supports three computing paradigms (distributed training, mobile on-device training, and standalone simulation) for users to conduct experiments in different system environments. FedML also promotes diverse algorithmic research with flexible and generic API design and reference baseline implementations. A curated and comprehensive benchmark dataset for the non-I.I.D setting aims at making a fair comparison. We believe FedML can provide an efficient and reproducible means of developing and evaluating algorithms for the federated learning research community. We maintain the source code, documents, and user community at https://FedML.ai.

For more details, please read our full paper: https://arxiv.org/abs/2007.13518

Usage

  1. Research on FL algorithm or system
  2. Teaching in a ML course
  3. System prototype for industrial production.
  4. Self-study FL: understanding code level details of FL algorithms.

Architecture

The functionality of each package is as follows:

fedml_core: The FedML low level API package. This package implements distributed computing by communication backend like MPI, and also support topology management. Other low-level APIs related to security and privacy are also supported.

fedml_api: The FedML high level API package. This package support different federated learning algorithm with only one line code. All algorithms are built based on the "fedml_core" package. Users can change this package to add more advanced algorithms.

fedml_experiments: This package is used to test algorithms in "fedml" package by calling high level APIs.

fedml_mobile: This package is used to support on-device training using Android/iOS smartphones.

fedml_IoT: This package is used to support on-device training using IoT devices.

applications: This package is a collection of applications based on FedML.

benchmark: This package is used to run benchmark experiments.

Join our Community

Please join our community. We will post updated features and answer questions on Slack.

Join fedml.slack.com (this is a link that never expires)

Citation

Please cite FedML in your publications if it helps your research:

@article{chaoyanghe2020fedml,
  Author = {He, Chaoyang and Li, Songze and So, Jinhyun and Zhang, Mi and Wang, Hongyi and Wang, Xiaoyang and Vepakomma, Praneeth and Singh, Abhishek and Qiu, Hang and Shen, Li and Zhao, Peilin and Kang, Yan and Liu, Yang and Raskar, Ramesh and Yang, Qiang and Annavaram, Murali and Avestimehr, Salman},
  Journal = {arXiv preprint arXiv:2007.13518},
  Title = {FedML: A Research Library and Benchmark for Federated Machine Learning},
  Year = {2020}
}

Contacts

The corresponding author is:

Chaoyang He
[email protected]
http://chaoyanghe.com

Comments
  • FedAvg accuracy stucks under 50

    FedAvg accuracy stucks under 50

    I am training Fedavg to get the benchmark accuracy with the given parameters. But, the accuracy is stuck under 50.

    Here is all my code:

    !git clone https://github.com/FedML-AI/FedML

    cd /content/FedML/fedml_experiments/standalone/fedavg

    !python main_fedavg.py --model mobilenet --dataset cifar10 --data_dir ./../../../data/cifar10 --partition_method hetero --comm_round 100 --epochs 20 --batch_size 64 --lr 0.001

    I suppose to get over 80% accuracy at least according to these benchmark results.

    https://wandb.ai/automl/fedml/runs/390hdz0e

    opened by AbdulMoqeet 39
  • About the args in FedML parrot examples.

    About the args in FedML parrot examples.

    from the step3 in docs https://doc.fedml.ai/simulation/examples/sp_fedavg_mnist_lr_example.html, I am told to execute the following command to run the example code: python torch_fedavg_mnist_lr_one_line_example.py --cf fedml_config.yaml However, when I tried to modify the args in this YAML file (eg. set the using_gpu to true), I found that in the runtime the training is still based on the CPU. So I checked the code in fedml/lib/python3.7/site-packages/fedml/arguments.py, line 63, and I found a snippet of code as follows: `

        path_current_file = path.abspath(path.dirname(__file__))
        if training_type == "simulation" and comm_backend == "single_process":
            config_file = path.join(path_current_file, "config/simulation_sp/fedml_config.yaml")
            cmd_args.yaml_config_file = config_file
        elif training_type == "simulation" and comm_backend == "MPI":
            config_file = path.join(
                path_current_file, "config/simulaton_mpi/fedml_config.yaml"
            )
            cmd_args.yaml_config_file = config_file
        elif training_type == "cross_silo":
            pass
        elif training_type == "cross_device":
            pass
        else:
            pass
    

    ` It seems during the simulation, it does not matter how you set the YAML file, the default one would be loaded.

    opened by JLU-Neal 12
  • Running error with mpi_torch_fedavg_mnist_lr_example

    Running error with mpi_torch_fedavg_mnist_lr_example

    When running the following code

    #!/usr/bin/env bash
    
    WORKER_NUM=$1
    
    PROCESS_NUM=`expr $WORKER_NUM + 1`
    echo $PROCESS_NUM
    
    hostname > mpi_host_file
    
    $(which mpirun) -np $PROCESS_NUM \
    -hostfile mpi_host_file \
    python torch_fedavg_mnist_lr_one_line_example.py --cf config/fedml_config.yaml
    

    Encounter an error

    (base) PS C:\Users\doubl\Desktop\script\fedml> bash run_step_by_step_example.sh 4                                       
    5                                                                                                                       
    run_step_by_step_example.sh: line 10: -np: command not found   
    

    The code is excuted as the instructions in https://doc.fedml.ai/simulation/examples/mpi_torch_fedavg_mnist_lr_example.html, and all the dependency is installed.

    opened by mh-lan 10
  • Installation encountered multiple errors

    Installation encountered multiple errors

    The first error encountered is :

    Building wheels for collected packages: fedml
      Building wheel for fedml (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py bdist_wheel did not run successfully.
      │ exit code: 1
      ╰─> [1027 lines of output]
    

    The second error :

    error: could not create 'build\bdist.win-amd64\wheel\fedml-0.7.305.data\purelib\examples\cross_silo\mqtt_s3_fedavg_hierarchical_manual_mnist_lr_example\one_line\main_fedml_cross_silo_hi.py': No such file or directory
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
      ERROR: Failed building wheel for fedml
      Running setup.py clean for fedml
    Failed to build fedml
    

    The last message displayed is :

    DEPRECATION: fedml was installed using the legacy 'setup.py install' method, because a wheel could not be built for it. A possible replacement is to fix the wheel build issue reported above. Discussion can be found at https://github.com/pypa/pip/issues/8368
    

    The installation steps are all installed in accordance with the FEDML INSTALLATION ON WINDOWS OS teaching, also tried using older versions of python (eg: 3.7, 3.9), but still got the same problem.

    opened by MING-LI-JIANG 9
  •  ModuleNotFoundError: No module named 'fedml.data.fednlp'

    ModuleNotFoundError: No module named 'fedml.data.fednlp'

    When running the example of TEXT CLASSIFICATION in fednlp. bash run_simulation.sh 1 Encounter an error image Is this caused by fedml or what else? All dependency is installed. Link: https://github.com/FedML-AI/FedML/tree/master/python/app/fednlp

    opened by Luoyang144 8
  • standalone Benchmark running the MNIST and Shakespeare

    standalone Benchmark running the MNIST and Shakespeare

    I can not get the same results when I run the command: sh run_fedavg_standalone_pytorch.sh 0 10 10 10 shakespeare ./../../../data/shakespeare rnn hetero 100 1 0.8 sgd 0 my results is: https://wandb.ai/pilgrim_cz/fedml/runs/5jqpw1i4?workspace=user-pilgrim_cz the benchmart res is https://wandb.ai/automl/fedml/runs/144ey9w6 same problem when I run minst dataset Is there anything wrong? I did not change any code.

    opened by sjtu-cz 8
  • Using your specified gpus' list by customizing the function

    Using your specified gpus' list by customizing the function "init_training_device"!

    Running the fedavg on the configure: 20 rounds, 10 epochs, 2 clients, cifar-10 dataset, resnet56, but the program always crashed! The errors as the following:

    W1GVSRF_Z(@7RQL9}K2ET$X

    I don't know the reason for the errors.

    good first issue 
    opened by weiyikang 8
  • How to run cross-silo with MPI?

    How to run cross-silo with MPI?

    How to run fedml /python/examples/simulation/MPI locally_ base_ framework_ The code in example, I use readme.md runs. The error in the figure appears. I have deployed the mqtt server locally. I have configured comm in the configuration file_ args.mqtt_ config_ Path, but it doesn't work

    image

    How to remove mlops? I set using_mlops: false has no effect

    opened by JessKXWL 7
  • Question about FedGKT

    Question about FedGKT

    Hi, I tried to run the FedGKT algorithm but the code got stuck in this part. For the FedAvg, it worked well. For my setting case, I just ran the code on the CPU. So can anyone help me with this? Thank you! P/s: Here I ran with 8 clients. fedgtkprob2 fedgtkprob1

    opened by Agent2H 7
  • After few communication round, client and server are losing the connection (fedcv/object_detection)

    After few communication round, client and server are losing the connection (fedcv/object_detection)

    I was using FedML platform for testing distributed training results for object detection between single server and multiple clients. Unfortunately, MQTT has some issue where server or client sometimes cannot receive the packet properly and showing only:

    receive_message. msg_type = 0, sender_id = 0, receiver_id = 0
    receive_message. msg_type = 0, sender_id = 0, receiver_id = 0
    

    where msg_type = 0 means received message has been corrupted. Although, I am using one server with multiple GPU to simulate server and clients based distributed training CROSS_SILO_HORIZONTAL mode, I could not understand why is this happening. Especially, when i use bigger data, this problem is happening in very early communication rounds.

    So, if anyone has solution with this problem, please share your experience.

    Just in case, I am attaching output of server and clients screenshots.

    SERVER OUTPUT server_output

    CLIENT-1 OUTPUT client_output

    CLIENT-2 OUTPUT client2_output

    opened by Adeelbek 6
  • Training and Test mAP@50 and mAP50:95 are showing very strange results in fedcv object detection

    Training and Test [email protected] and mAP50:95 are showing very strange results in fedcv object detection

    I have training Cross-Silo Horizontal distributed training mode with following configuration settings:

    common_args:
      training_type: "cross_silo"
      random_seed: 0
      scenario: "horizontal"
      using_mlops: false
      config_version: release
      name: "exp" # yolo
      project: "runs/train" # yolo
      exist_ok: true # yolo
    
    environment_args:
      bootstrap: /home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/config/bootstrap.sh
    
    data_args:
      dataset: "bdd"
      data_cache_dir: ~/fedcv_data
      partition_method: "homo"
      partition_alpha: 0.5
      data_conf: "/home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/data/bdd.yaml" # yolo
      img_size: [640, 640] # [640, 640]
    
    model_args:
      model: "yolov5" # "yolov5"
      class_num: 13
      yolo_cfg: "/home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/model/yolov5/models/yolov5s.yaml" # "./model/yolov6/configs/yolov6s.py" # yolo
      yolo_hyp: "/home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/config/hyps/hyp.scratch.yaml" # yolo
      weights: "none" # "best.pt" # yolo
      single_cls: false # yolo
      conf_thres: 0.001 # yolo
      iou_thres: 0.6 # for yolo NMS
      yolo_verbose: true # yolo
    
    train_args:
      federated_optimizer: "FedAvg"
      client_id_list:
      client_num_in_total: 2
      client_num_per_round: 2
      comm_round: 10
      epochs: 4
      batch_size: 64
      client_optimizer: sgd
      lr: 0.01
      weight_decay: 0.001
      checkpoint_interval: 1
      server_checkpoint_interval: 1
    
    validation_args:
      frequency_of_the_test: 2
    
    device_args:
      worker_num: 2
      using_gpu: true
      gpu_mapping_file: /home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/config/gpu_mapping.yaml
      gpu_mapping_key: mapping_config5_2
      gpu_ids: [0,1,2,3,4,5,6,7]
    
    comm_args:
      backend: "MQTT_S3"
      mqtt_config_path: /home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/config/mqtt_config.yaml
      s3_config_path: /home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/config/s3_config.yaml
    
    tracking_args:
      log_file_dir: /home/gpuadmin/Project/FedML/python/app/fedcv/object_detection/log
      enable_wandb: true
      wandb_key: ee0b5f53d949c84cee7decbe7a6
      wandb_project: fedml
      wandb_name: fedml_torch_object_detection
    
    

    During the training I have got very high [email protected] and [email protected]:95 almost for every epoch from beginning till the end. Normally, mAP should be small for early training epochs and it should grow slowly in the later epochs. But in my case it is just fluctuating in range of 0.985 ~ 0.9885 for both clients. I have checked metric calculation functions borrowed from original YOLOv5 PyTorch platform. They are working fine. IF ANYBODY CAN SHARE THEIR PRELIMINARY RESULTS FOR DISTRIBUTED OBJECT DETECTION FOR ANY DATASET (COCO or PASCAL VOC). I would like to verify my result with their result. For solo YOLOv5s model training, ,mAP is much smaller and it is growing epochs by epochs.

    Any clue from the Authors would be very much appreciated.

    P.S. For mAP calculation, I used default val(train_data, device, args) function inside the YOLOv5Trainer class in the yolov5_trainer.py .

    opened by Adeelbek 6
  • where is the test_arm_android_64.sh in fedmlsdk MobileNN?

    where is the test_arm_android_64.sh in fedmlsdk MobileNN?

    Hello, recently I'm trying to reproduce the demo of fedmlsdk on android device,and I followed the tutorial at https://github.com/FedML-AI/FedML/tree/master/android/fedmlsdk)/MobileNN/, and I see the line below:

    run ./test_arm_android_64.sh, which will push demo.out to your android device and execute it.

    however,i can not find the test_arm_android_64.sh in the repo? Could you please check the issue?

    opened by T122D002L 0
  • (fednlp) When executed run_ simulation.sh in text_classification, the mpi has a problem

    (fednlp) When executed run_ simulation.sh in text_classification, the mpi has a problem

    image I have already installed mpi4py3.1.4 and libopenmpi-dev,and the Ubuntu is 18。I searched a lot of posts on the Internet, but I couldn't figure it out。

    opened by sxc225 0
  • How to run hierarchical_fedavg_mnist_lr_example on Raspberry Pi 4

    How to run hierarchical_fedavg_mnist_lr_example on Raspberry Pi 4

    https://doc.fedml.ai/cross-silo/examples/mqtt_s3_fedavg_hierarchical_mnist_lr_example.html

    Hi,@chaoyanghe I refer to the URL above The server uses ubuntu 22.04LTS+RTX2080ti Both silo1 and server are executed on ubuntu

    silo2 executes on Raspberry Pi 4 + 64bit OS But the raspberry pie has no GPU, and the mapping gpu has been changed to false What else needs to be modified?

    Thank you for your reply 2022-12-13 01 44 47

    opened by LCH517 0
  • custom criteria support; custom trainer support; better warning info.

    custom criteria support; custom trainer support; better warning info.

    Allow use of custom criteria of client trainer for classification task; allow custom client trainer for single process simulation; better exception info and hint for these two condition.

    opened by chengza 1
  • How do different algorithms work?

    How do different algorithms work?

    Hello,I want to ask for a help: In the "main_fedml_image_segmentation. py" file of the fedcv module, "SegmentationTrainer. py" and "SegmentationAggregator. py" under the "image_segmentation/trainer" module are imported during training. Suppose I modify different algorithms in "fedml_config. yaml", such as FedAvg, FedOpt, FedProx, but still use the same SegmentationTrainer and SegmentationAggregator, without any difference? How should different algorithms be implemented? In fedcv/segmentation, how do the algorithms in fedml/simulation/mpi work? They are all the same?

    opened by caozhantao 1
  • fedgraphnn only support MPI?

    fedgraphnn only support MPI?

    Hello, I tried to change the common args from 'backend:MPI' to 'backend:sp' in ego_network_node_clf, and it failed. So I wonder if fedgraphnn only support MPI. If not, how can i adjust the config parameter, thanks!

    opened by MaoPopovich 2
Releases(fedml_v0.6_before_fundraising)
Owner
FedML-AI
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML-AI
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Mengzi Pretrained Models

中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

Langboat 424 Jan 04, 2023
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022