PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Overview

Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Julian Zaïdi, Hugo Seuté, Benjamin van Niekerk, Marc-André Carbonneau

In our recent paper we propose Daft-Exprt, a multi-speaker acoustic model advancing the state-of-the-art on inter-speaker and inter-text prosody transfer. This improvement is achieved using FiLM conditioning layers, alongside adversarial training that encourages disentanglement between prosodic information and speaker identity. The acoustic model inherits attractive qualities from FastSpeech 2, such as fast inference and local prosody attributes prediction for finer grained control over generation. Moreover, results indicate that adversarial training effectively discards speaker identity information from the prosody representation, which ensures Daft-Exprt will consistently generate speech with the desired voice.

Experimental results show that Daft-Exprt accurately transfers prosody, while yielding naturalness comparable to state-of-the-art expressive models. Visit our demo page for audio samples related to the paper experiments.

Pre-trained model

Full disclosure: The model provided in this repository is not the same as in the paper evaluation. The model of the paper was trained with proprietary data which prevents us to release it publicly.
We pre-train Daft-Exprt on a combination of LJ speech dataset and the emotional speech dataset (ESD) from Zhou et al.
Visit the releases of this repository to download the pre-trained model and to listen to prosody transfer examples using this same model.

Table of Contents

Installation

Local Environment

Requirements:

We recommend using conda for python environment management, for example download and install Miniconda.
Create your python environment and install dependencies using the Makefile:

  1. conda create -n daft_exprt python=3.8 -y
  2. conda activate daft_exprt
  3. cd environment
  4. make

All Linux/Conda/Python dependencies will be installed by the Makefile, and the repository will be installed as a pip package in editable mode.

Docker Image

Requirements:

Build the Docker image using the associated Dockerfile:

  1. docker build -f environment/Dockerfile -t daft_exprt .

Quick Start Example

Introduction

This quick start guide will illustrate how to use the different scripts of this repository to:

  1. Format datasets
  2. Pre-process these datasets
  3. Train Daft-Exprt on the pre-processed data
  4. Generate a dataset for vocoder fine-tuning
  5. Use Daft-Exprt for TTS synthesis

All scripts are located in scripts directory.
Daft-Exprt source code is located in daft_exprt directory.
Config parameters used in the scripts are all instanciated in hparams.py.

As a quick start example, we consider using the 22kHz LJ speech dataset and the 16kHz emotional speech dataset (ESD) from Zhou et al.
This combines a total of 11 speakers. All speaker datasets must be in the same root directory. For example:

/data_dir
    LJ_Speech
    ESD
        spk_1
        ...
        spk_N

In this example, we use the docker image built in the previous section:

docker run -it --gpus all -v /path/to/data_dir:/workdir/data_dir -v path/to/repo_dir:/workdir/repo_dir IMAGE_ID

Dataset Formatting

The source code expects the specific tree structure for each speaker data set:

/speaker_dir
    metadata.csv
    /wavs
        wav_file_name_1.wav
        ...
        wav_file_name_N.wav

metadata.csv must be formatted as follows:

wav_file_name_1|text_1
...
wav_file_name_N|text_N

Given each dataset has its own nomenclature, this project does not provide a ready-made universal script.
However, the script format_dataset.py already proposes the code to format LJ and ESD:

python format_dataset.py \
    --data_set_dir /workdir/data_dir/LJ_Speech \
    LJ

python format_dataset.py \
    --data_set_dir /workdir/data_dir/ESD \
    ESD \
    --language english

Data Pre-Processing

In this section, the code will:

  1. Align data using MFA
  2. Extract features for training
  3. Create train and validation sets
  4. Extract features stats on the train set for speaker standardization

To pre-process all available formatted data (i.e. LJ and ESD in this example):

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --data_set_dir /workdir/data_dir \
    pre_process

This will pre-process data using the default hyper-parameters that are set for 22kHz audios.
All outputs related to the experiment will be stored in /workdir/repo_dir/trainings/EXPERIMENT_NAME.
You can also target specific speakers for data pre-processing. For example, to consider only ESD speakers:

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --speakers ESD/spk_1 ... ESD/spk_N \
    --data_set_dir /workdir/data_dir \
    pre_process

The pre-process function takes several arguments:

  • --features_dir: absolute path where pre-processed data will be stored. Default to /workdir/repo_dir/datasets
  • --proportion_validation: Proportion of examples that will be in the validation set. Default to 0.1% per speaker.
  • --nb_jobs: number of cores to use for python multi-processing. If set to max, all CPU cores are used. Default to 6.

Note that if it is the first time that you pre-process the data, this step will take several hours.
You can decrease computing time by increasing the --nb_jobs parameter.

Training

Once pre-processing is finished, launch training. To train on all pre-processed data:

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --data_set_dir /workdir/data_dir \
    train

Or if you targeted specific speakers during pre-processing (e.g. ESD speakers):

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --speakers ESD/spk_1 ... ESD/spk_N \
    --data_set_dir /workdir/data_dir \
    train

All outputs related to the experiment will be stored in /workdir/repo_dir/trainings/EXPERIMENT_NAME.

The train function takes several arguments:

  • --checkpoint: absolute path of a Daft-Exprt checkpoint. Default to ""
  • --no_multiprocessing_distributed: disable PyTorch multi-processing distributed training. Default to False
  • --world_size: number of nodes for distributed training. Default to 1.
  • --rank: node rank for distributed training. Default to 0.
  • --master: url used to set up distributed training. Default to tcp://localhost:54321.

These default values will launch a new training starting at iteration 0, using all available GPUs on the machine.
The code supposes that only 1 GPU is available on the machine.
Default batch size and gradient accumulation hyper-parameters are set to values to reproduce the batch size of 48 from the paper.

The code also supports tensorboard logging. To display logging outputs:
tensorboard --logdir_spec=EXPERIMENT_NAME:/workdir/repo_dir/trainings/EXPERIMENT_NAME/logs

Vocoder Fine-Tuning

Once training is finished, you can create a dataset for vocoder fine-tuning:

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --data_set_dir /workdir/data_dir \
    fine_tune \
    --checkpoint CHECKPOINT_PATH

Or if you targeted specific speakers during pre-processing and training (e.g. ESD speakers):

python training.py \
    --experiment_name EXPERIMENT_NAME \
    --speakers ESD/spk_1 ... ESD/spk_N \
    --data_set_dir /workdir/data_dir \
    fine_tune \
    --checkpoint CHECKPOINT_PATH

Fine-tuning dataset will be stored in /workdir/repo_dir/trainings/EXPERIMENT_NAME/fine_tuning_dataset.

TTS Synthesis

For an example on how to use Daft-Exprt for TTS synthesis, run the script synthesize.py.

python synthesize.py \
    --output_dir OUTPUT_DIR \
    --checkpoint CHECKPOINT

Default sentences and reference utterances are used in the script.

The script also offers the possibility to:

  • --batch_size: process batch of sentences in parallel
  • --real_time_factor: estimate Daft-Exprt real time factor performance given the chosen batch size
  • --control: perform local prosody control

Citation

@article{Zaidi2021,
abstract = {},
journal = {arXiv},
arxivId = {2108.02271},
author = {Za{\"{i}}di, Julian and Seut{\'{e}}, Hugo and van Niekerk, Benjamin and Carbonneau, Marc-Andr{\'{e}}},
eprint = {2108.02271},
title = {{Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis}},
url = {https://arxiv.org/pdf/2108.02271.pdf},
year = {2021}
}

Contributing

Any contribution to this repository is more than welcome!
If you have any feedback, please send it to [email protected].

© [2021] Ubisoft Entertainment. All Rights Reserved

Comments
  • Error while running Pretrained model

    Error while running Pretrained model

    Hi @julianzaidi, I pointed to that file in checkpoint argument (archive/data.pkl) but got an unpickle error. If you could tell how to run this pretrained model, it would be so kind of you.

    python synthesize.py --output_dir OUTPUT_DIR --checkpoint "archive/data.pkl"

    Traceback (most recent call last): File "synthesize.py", line 148, in file_names, refs, speaker_ids = synthesize(args, use_griffin_lim=True)

    File "synthesize.py", line 38, in synthesize checkpoint_dict = torch.load(args.checkpoint, map_location=f'cuda:{0}')

    File "/home/saomya/miniconda3/envs/daft_exprt/lib/python3.8/site-packages/torch/serialization.py", line 608, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)

    File "/home/saomya/miniconda3/envs/daft_exprt/lib/python3.8/site-packages/torch/serialization.py", line 777, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args)

    _pickle.UnpicklingError: A load persistent id instruction was encountered, but no persistent_load function was specified. Screenshot from 2022-10-26 15-19-43

    opened by anushvst 12
  • ldd version

    ldd version

    Hi, when I run the python training.py pre_process, it prompts Exception: REAPER binary -- Unsupported ldd version: 2.27 < 2.29. However, my machine could not update the glibc version. Are there any alternatives? Thanks! image

    opened by inconnu11 3
  • How to run the Pre-trained model

    How to run the Pre-trained model

    Hi @julianzaidi, we tried to run your pre-trained model. However, we are unable to get clarification on the values of the parameters that we need to pass, for instance, specific checkpoints. Also, we received the CUDA out of memory issues too. We would like to run the pre-trained model in Windows instead of Linux. How could we do this?

    opened by saomya-seasia 2
  • Automatic aligner like in FastPitch?

    Automatic aligner like in FastPitch?

    Hello! Do you think it's possible to incorporate automatic aligner as in FastPitch (https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/FastPitch), as described in paper "One TTS Alignment To Rule Them All"? This aligner essentially only requires graphemes or phonemes and learns with the rest of the network. It would allow to omit Montreal Forced Aligner preprocessing and decrease preprocessing time. If it's possible, what should be changed to allow the use of such an aligner?

    opened by juliakorovsky 2
  • Position-dependent prosody transfer result

    Position-dependent prosody transfer result

    It seem to obtain position-dependent prosody transfer result by utterance-level embedding. Why location information could be embedded in the representation obtained by mean pool operation?

    opened by hyzhan 2
  • np.frombuffer

    np.frombuffer

    Hi, when I extract the f0 using the reaper , it shows the error "ValueError: buffer size must be a multiple of element size ". Could you please help me out?

    opened by inconnu11 0
  • Able to train on LJ & ESD dataset but error in training the model on custom dataset

    Able to train on LJ & ESD dataset but error in training the model on custom dataset

    Hi @julianzaidi @macarbonneau, hope you guys are doing well. Just want to ask few queries regarding the training aspect.

    • I tried to train the model on my voice

    • Formatted the dataset successfully

    • In pre_processing step, got the error: ValueError: zero-size array to reduction operation minimum which has no identity

    • Created directories in this format: work_dir/data_dir/LJ_Speech/wavs

    • In wavs folder i gave around 10 audio clips around 2-3 minute length

    • Prepared the metadata according to the instructions in the repository

    • Should we use short audio clips to train the model?

    Any suggestion regarding this will be very kind of you.

    opened by anushvst 0
  • Problems regarding pretrained model of the daft exprt model

    Problems regarding pretrained model of the daft exprt model

    Hi @julianzaidi @macarbonneau, hope you guys are doing well. Just want to ask few queries regarding the model.

    • I want to use the model such that it can generate audio in a Hip Hop music artist's voice (he passed away few years ago) giving a certain prosody in reference voice and lyrics in the text.

    • Curious about the answers to these questions as i am trying to get some audio clips > than 30 seconds

    When i run the pretrained model giving reference voice and text, it sounds robotic/unnatural.

    • I gave my reference voice (24 sec)

    • Text: "Hello John, my name is Don with marketing dot com and I actually just recently came across micro soft and I thought there were some interesting things that we might be able to do together. Um, we do a lot of work in retail and I'm actually coming to New York next week for a conference. So, if you're around I would love to meet with you, buy you a cup of coffee and tell you a little bit more about what we're thinking that we can do for you. Alright, hope to see you soon."

    • got this output

    https://user-images.githubusercontent.com/92500349/201936746-6b7760a1-fbca-465a-ab27-96ae648564a8.mp4

    1. Also in the ouput voice, it generated robotic or un-natural voice till 18 seconds. After that the model generated distorted voice. Any idea about the distortion?

    2. Should we give the model short reference voice and text?

    3. Can the model produce the output voice greater than 1 minute or it produces short voice?

    4. Is punctuation necessary? also will it work if we give "7" instead of "seven" in text file?

    5. Want to clarify whose voice the model produces in the output: the reference speaker voice or the model's voice on which it is trained (LJ, ESD)?

    6. I am still getting the unnatural (but better than previous) voice after training on the LJ dataset. Any tips how to get the natural voice output?

    • Reference voice - LJ's voice
    • Text: Hello John, my name is Don with marketing dot com. I actually just recently came across microsoft.
    • The output i got was:

    https://user-images.githubusercontent.com/92500349/202087380-1858ecab-b32f-4db7-9021-885a185222e0.mp4

    • Is it because the model arcitecture used in generating audios in demo page is different than the model architecture present in the repository?
    • Any methods to reduce noise in the output voice?
    opened by anushvst 0
Releases(1.0.0)
  • 1.0.0(Sep 10, 2021)

    Release contents:

    • Daft-Exprt model pre-trained on LJ Speech Dataset and the Emotional Speech Dataset from Zhou et al.
    • Prosody transfer examples synthesized using this pre-trained model and Griffin-Lim algorithm

    Full disclosure: The model provided in this release is not the same as in the paper evaluation. The model of the paper was trained with proprietary data which prevents us to release it publicly.

    Source code(tar.gz)
    Source code(zip)
    DaftExprt_LJ_ESD_22kHz(168.73 MB)
    demo.zip(13.51 MB)
Owner
Ubisoft
Ubisoft open source projects.
Ubisoft
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022