Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

Overview

human-pose-estimation-3d-python-cpp

  • RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used)

ezgif com-gif-maker (16)

1. Run

1-1. RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used)

$ xhost +local: && \
docker run -it --rm \
-v `pwd`:/home/user/workdir \
-v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
--device /dev/video0:/dev/video0:mwr \
--device /dev/video1:/dev/video1:mwr \
--device /dev/video2:/dev/video2:mwr \
--device /dev/video3:/dev/video3:mwr \
--device /dev/video4:/dev/video4:mwr \
--device /dev/video5:/dev/video5:mwr \
--net=host \
-e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
-e DISPLAY=$DISPLAY \
--privileged \
ghcr.io/pinto0309/openvino2tensorflow:latest
$ python3 human_pose_estimation_3d_demo.py \
--model models/openvino/FP16/human-pose-estimation-3d-0001_bgr_480x640.xml \
--device CPU \
--input 4

1-2. RealSenseD435 (RGB) 480x640 + iGPU (OpenCL)

$ xhost +local: && \
docker run -it --rm \
-v `pwd`:/home/user/workdir \
-v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
--device /dev/video0:/dev/video0:mwr \
--device /dev/video1:/dev/video1:mwr \
--device /dev/video2:/dev/video2:mwr \
--device /dev/video3:/dev/video3:mwr \
--device /dev/video4:/dev/video4:mwr \
--device /dev/video5:/dev/video5:mwr \
--net=host \
-e LIBVA_DRIVER_NAME=iHD \
-e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
-e DISPLAY=$DISPLAY \
--privileged \
ghcr.io/pinto0309/openvino2tensorflow:latest
$ python3 human_pose_estimation_3d_demo.py \
--model models/openvino/FP16/human-pose-estimation-3d-0001_bgr_480x640.xml \
--device GPU \
--input 4

1-3. General USB Camera 480x640 + CPU

$ xhost +local: && \
docker run -it --rm \
-v `pwd`:/home/user/workdir \
-v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
--device /dev/video0:/dev/video0:mwr \
--net=host \
-e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
-e DISPLAY=$DISPLAY \
--privileged \
ghcr.io/pinto0309/openvino2tensorflow:latest
$ python3 human_pose_estimation_3d_demo.py \
--model models/openvino/FP16/human-pose-estimation-3d-0001_bgr_480x640.xml \
--device CPU \
--input 0

2. Build

$ PYTHON_PREFIX=$(python3 -c "import sys; print(sys.prefix)") \
&& PYTHON_VERSION=$(python3 -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')") \
&& PYTHON_INCLUDE_DIRS=${PYTHON_PREFIX}/include/python${PYTHON_VERSION}

$ NUMPY_INCLUDE_DIR=$(python3 -c "import numpy; print(numpy.get_include())")

$ mkdir -p pose_extractor/build && cd pose_extractor/build

$ cmake \
-DPYTHON_INCLUDE_DIRS=${PYTHON_INCLUDE_DIRS} \
-DNUMPY_INCLUDE_DIR=${NUMPY_INCLUDE_DIR} ..

$ make && cp pose_extractor.so ../.. && cd ../..

3. Reference

  1. https://github.com/openvinotoolkit/open_model_zoo/tree/2021.4.1/demos/human_pose_estimation_3d_demo/python
  2. https://docs.openvino.ai/2021.4/omz_models_model_human_pose_estimation_3d_0001.html
  3. https://github.com/PINTO0309/PINTO_model_zoo/tree/main/029_human-pose-estimation-3d-0001
Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022