Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

Related tags

Deep Learningboombox
Overview

The Boombox: Visual Reconstruction from Acoustic Vibrations

Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick
Columbia University

Project Website | Video | Paper

Overview

This repo contains the PyTorch implementation for paper "The Boombox: Visual Reconstruction from Acoustic Vibrations".

teaser

Content

Installation

Our code has been tested on Ubuntu 18.04 with CUDA 11.0. Create a python virtual environment and install the dependencies.

virtualenv -p /usr/bin/python3.6 env-boombox
source env-boombox/bin/activate
cd boombox
pip install -r requirements.txt

Data Preparation

Run the following commands to download the dataset (2.0G).

cd boombox
wget https://boombox.cs.columbia.edu/dataset/data.zip
unzip data.zip
rm -rf data.zip

After this step, you should see a folder named as data, and video and audio data are in cube, small_cuboid and large_cuboid subfolders.

About Configs and Logs

Before training and evaluation, we first introduce the configuration and logging structure.

  1. Configs: all the specific parameters used for training and evaluation are indicated as individual config file. Overall, we have two training paradigms: single-shape and multiple-shape.

    For single-shape, we train and evaluate on each shape separately. Their config files are named with their own shape: cube, large_cuboid and small_cuboid. For multiple-shape, we mix all the shapes together and perform training and evaluation while the shape is not known a priori. The config file folder is all.

    Within each config folder, we have config file for depth prediction and image prediction. The last digit in each folder refers to the random seed. For example, if you want to train our model with all the shapes mixed to output a RGB image with random seed 3, you should refer the parameters in:

    configs/all/2d_out_img_3
    
  2. Logs: both the training and evaluation results will be saved in the log folder for each experiment. The last digit in the logs folder indicates the random seed. Inside the logs folder, the structure and contents are:

    \logs_True_False_False_image_conv2d-encoder-decoder_True_{output_representation}_{seed}
        \lightning_logs
            \checkpoints               [saved checkpoint]
            \version_0                 [training stats]
            \version_1                 [testing stats]
        \pred_visualizations           [predicted and ground-truth images]
    

Training

Both training and evaluation are fast. We provide an example bash script for running our experiments in run_audio.sh. Specifically, to train our model on all shapes that outputs RGB image representations with random seed 1 and GPU 0, run the following command:

CUDA_VISIBLE_DEVICES=0 python main.py ./configs/all/2d_out_img_1/config.yaml;

Evaluation

Again, we provide an example bash script for running our experiments in run_audio.sh. Following the above example, to evaluate the trained model, run the following command:

CUDA_VISIBLE_DEVICES=0 python eval.py ./configs/all/2d_out_img_1/config.yaml ./logs_True_False_False_image_conv2d-encoder-decoder_True_pixel_1/lightning_logs/checkpoints;

License

This repository is released under the MIT license. See LICENSE for additional details.

Owner
Boyuan Chen
Ph.D. student in Computer Science at Columbia University Creative Machines Lab.
Boyuan Chen
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023