Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

Related tags

Deep LearningAimCLR
Overview

AimCLR

This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

Requirements

Python >=3.6 PyTorch >=1.6

Data Preparation

  • Download the raw data of NTU RGB+D and PKU-MMD.
  • For NTU RGB+D dataset, preprocess data with tools/ntu_gendata.py. For PKU-MMD dataset, preprocess data with tools/pku_part1_gendata.py.
  • Then downsample the data to 50 frames with feeder/preprocess_ntu.py and feeder/preprocess_pku.py.
  • If you don't want to process the original data, download the file folder action_dataset.

Installation

# Install torchlight
$ cd torchlight
$ python setup.py install
$ cd ..

# Install other python libraries
$ pip install -r requirements.txt

Unsupervised Pre-Training

Example for unsupervised pre-training of 3s-AimCLR. You can change some settings of .yaml files in config/ntu60/pretext folder.

# train on NTU RGB+D xview joint stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_joint.yaml

# train on NTU RGB+D xview motion stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_motion.yaml

# train on NTU RGB+D xview bone stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_bone.yaml

Linear Evaluation

Example for linear evaluation of 3s-AimCLR. You can change .yaml files in config/ntu60/linear_eval folder.

# Linear_eval on NTU RGB+D xview
$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_joint.yaml

$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_motion.yaml

$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_bone.yaml

Trained models

We release several trained models in released_model. The performance is better than that reported in the paper. You can download them and test them with linear evaluation by changing weights in .yaml files.

Model NTU 60 xsub (%) NTU 60 xview (%) PKU-MMD Part I (%)
AimCLR-joint 74.34 79.68 83.43
AimCLR-motion 68.68 71.83 72.00
AimCLR-bone 71.87 77.02 82.03
3s-AimCLR 79.18 84.02 87.79

Visualization

The t-SNE visualization of the embeddings after AimCLR pre-training on NTU60-xsub.

Citation

Please cite our paper if you find this repository useful in your resesarch:

@inproceedings{guo2022aimclr,
  Title= {Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition},
  Author= {Tianyu, Guo and Hong, Liu and Zhan, Chen and Mengyuan, Liu and Tao, Wang  and Runwei, Ding},
  Booktitle= {AAAI},
  Year= {2022}
}

Acknowledgement

The framework of our code is extended from the following repositories. We sincerely thank the authors for releasing the codes.

  • The framework of our code is based on CrosSCLR.
  • The encoder is based on ST-GCN.

Licence

This project is licensed under the terms of the MIT license.

Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022