Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Overview

Do Not Trust Prediction Scores for Membership Inference Attacks

False-Positive Examples

Abstract: Membership inference attacks (MIAs) aim to determine whether a specific sample was used to train a predictive model. Knowing this may indeed lead to a privacy breach. Arguably, most MIAs, however, make use of the model's prediction scores---the probability of each output given some input---following the intuition that the trained model tends to behave differently on its training data. We argue that this is a fallacy for many modern deep network architectures, e.g., ReLU type neural networks produce almost always high prediction scores far away from the training data. Consequently, MIAs will miserably fail since this behavior leads to high false-positive rates not only on known domains but also on out-of-distribution data and implicitly acts as a defense against MIAs. Specifically, using generative adversarial networks, we are able to produce a potentially infinite number of samples falsely classified as part of the training data. In other words, the threat of MIAs is overestimated and less information is leaked than previously assumed. Moreover, there is actually a trade-off between the overconfidence of classifiers and their susceptibility to MIAs: the more classifiers know when they do not know, making low confidence predictions far away from the training data, the more they reveal the training data.
Arxiv Preprint (PDF)

Membership Inference Attacks

Membership Inference Attacks


Membership Inference Attack Preparation Process

In a general MIA setting, as usually assumed in the literature, an adversary is given an input x following distribution D and a target model which was trained on a training set with size S_train consisting of samples from D. The adversary is then facing the problem to identify whether a given x following D was part of the training set S_train. To predict the membership of x, the adversary creates an inference model h. In score-based MIAs, the input to h is the prediction score vector produced by the target model on sample x (see first figure above). Since MIAs are binary classification problems, precision, recall and false-positive rate (FPR) are used as attack evaluation metrics.

All MIAs exploit a difference in the behavior of the target model on seen and unseen data. Most attacks in the literature follow Shokri et al. and train so-called shadow models shadow models on a disjoint dataset S_shadow drawn from the same distribution D as S_train. The shadow model is used to mimic the behavior of the target model and adjust parameters of h, such as threshold values or model weights. Note that the membership status for inputs to the shadow models are known to the adversary (see second figure above).

Setup and Run Experiments

Setup StyleGAN2-ADA

To recreate our Fake datasets containing synthetic CIFAR-10 and Stanford Dog images, you need to clone the official StyleGAN-2-Pytorch repo into the folder datasets.

cd datasets
git clone https://github.com/NVlabs/stylegan2-ada-pytorch.git
rm -r --force stylegan2-ada-pytorch/.git/

You can also safely remove all folders in the /datasets/stylegan2-ada-pytorch folder but /dnnlib and /torch_utils.

Setup Docker Container

To build the Docker container run the following script:

./docker_build.sh -n confidence_mi

To start the docker container run the following command from the project's root:

docker run --rm --shm-size 16G --name my_confidence_mi --gpus '"device=0"' -v $(pwd):/workspace/confidences -it confidence_mi bash

Download Trained Models

We provide our trained models on which we performed our experiments. To automatically download and extract the files use the following command:

bash download_pretrained_models.sh

To manually download single models, please visit https://hessenbox.tu-darmstadt.de/getlink/fiBg5znMtAagRe58sCrrLtyg/pretrained_models.

Reproduce Results from the Paper

All our experiments based on CIFAR-10 and Stanford Dogs can be reproduced using the pre-trained models by running the following scripts:

python experiments/cifar10_experiments.py
python experiments/stanford_dogs_experiments.py

If you want to train the models from scratch, the following commands can be used:

python experiments/cifar10_experiments.py --train
python experiments/stanford_dogs_experiments.py --train --pretrained

We use command line arguments to specify the hyperparameters of the training and attacking process. Default values correspond to the parameters used for training the target models as stated in the paper. The same applies for the membership inference attacks. To train models with label smoothing, L2 or LLLA, run the experiments with --label_smoothing, --weight_decay or --llla. We set the seed to 42 (default value) for all experiments. For further command line arguments and details, please refer to the python files.

Attack results will be stored in csv files at /experiments/results/{MODEL_ARCH}_{DATASET_NAME}_{MODIFIERS}_attack_results.csv and state precision, recall, fpr and mmps values for the various input datasets and membership inference attacks. Results for training the target and shadow models will be stored in the first column at /experiments/results/{MODEL_ARCH}_{DATASET_NAME}_{MODIFIERS}_performance_results.csv. They state the training and test accuracy, as well as the ECE.

Datasets

All data is required to be located in /data/. To recreate the Fake datasets using StyleGAN2-ADA to generate CIFAR-10 and dog samples, use /datasets/fake_cifar10.py and /datasets/fake_dogs.py. For example, Fake Dogs samples are located at /data/fake_afhq_dogs/Images after generation. If the files are missing or corrupted (checked by MD5 checksum), the images will be regenerated to restore the identical datasets used in the paper. This process will be automatically called when running one of the experiments. We use various datasets in our experiments. The following figure gives a short overview over the content and visual styles of the datasets.

Membership Inference Attacks

Citation

If you build upon our work, please don't forget to cite us.

@misc{hintersdorf2021trust,
      title={Do Not Trust Prediction Scores for Membership Inference Attacks}, 
      author={Dominik Hintersdorf and Lukas Struppek and Kristian Kersting},
      year={2021},
      eprint={2111.09076},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Implementation Credits

Some of our implementations rely on other repos. We want to thank the authors for making their code publicly available. For license details refer to the corresponding files in our repo. For more details on the specific functionality, please visit the corresponding repos.

Owner
[email protected]
Machine Learning Group at TU Darmstadt
<a href=[email protected]">
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022