《Deep Single Portrait Image Relighting》(ICCV 2019)

Overview

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page]

This is part of the Deep Portrait Relighting project. If you find this project useful, please cite the paper:

@InProceedings{DPR, 
  title={Deep Single Portrait Image Relighting},
  author = {Hao Zhou and Sunil Hadap and Kalyan Sunkavalli and David W. Jacobs},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2019}
}

NOTE:

This code is not optimized and may not be well organized.

Dependences:

3DDFA: https://github.com/cleardusk/3DDFA (download the code and put it in useful_code, follow the instruction to download model and setup the code)

Environment setup:

I use miniconda to setup virtual environment

  • Create a virtual enviroment named RI_render (you can choose your own name): conda create -n RI_render python=3.6
  • Install pytorch: conda install pytorch torchvision cudatoolkit=9.2 -c pytorch -n RI_render
  • Install dlib: conda install -c conda-forge dlib -n RI_render
  • Install opencv: conda install -n RI_render -c conda-forge opencv
  • Install scipy: conda install -n RI_render -c conda-forge scipy
  • Install matplotlib: conda install -n RI_render -c conda-forge matplotlib
  • Install cython: conda install -n RI_render -c anaconda cython
  • Compile 3DDFA as mentioned in the github webpage
  • Compile cython in utils/cython, follow the readme file
  • Install Delaunay Triangulation:
  • Install libigl:
  • Install shtools: https://github.com/SHTOOLS/SHTOOLS
  • Install cvxpy: conda install -c conda-forge cvxpy

Steps for rendering

  1. fitting 3DDFA: run bash run_fit.sh, will generate several files in result: *_3DDFA.png: draw 2D landmark on face *_depth.png: depth image *_detected.txt: detected 2D landmark on faces *_project.txt: projected 3D landmark *.obj: fitted mesh

  2. run bash run_render.sh generate albedo, normal, uv map and semantic segmentation: *_new.obj: obj file for rendering in render: *.png show generate images *.npy show original file of albedo, normal, uv map and semantic segmentation. NOTE: if you can install OpenEXR, you can save npy as .exr file

  3. run bash run_node.sh Apply arap to further align faces in render: generate arap.obj an object of arap algorithm *.node and *.ele temperal files for applying arap

  4. run bash run_warp.sh create warped albedo, normal, semantic segmentation in result/warp:

  5. run bash run_fillHoles.sh remove ear and neck region and fill in holes in generated normal map: create full_normal_faceRegion_faceBoundary_extend.npy and full_normal_faceRegion_faceBoundary_extend.png in result/warp

  6. run bash run_relight.sh relighting faces download our processed bip2017 lighting through (https://drive.google.com/open?id=1l0SiR10jBqACiOeAvsXSXAufUtZ-VhxC), change line 155 in script_relighting.py to poit to the lighting folder Apply face semantic segmentation to get skin region of the face: https://github.com/Liusifei/Face_Parsing_2016 save the results in folder face_parsing/ (examples are shown in face_parsing, you can also skip this by adapting the code of script_relighting.py)

Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022