《Deep Single Portrait Image Relighting》(ICCV 2019)

Overview

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page]

This is part of the Deep Portrait Relighting project. If you find this project useful, please cite the paper:

@InProceedings{DPR, 
  title={Deep Single Portrait Image Relighting},
  author = {Hao Zhou and Sunil Hadap and Kalyan Sunkavalli and David W. Jacobs},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2019}
}

NOTE:

This code is not optimized and may not be well organized.

Dependences:

3DDFA: https://github.com/cleardusk/3DDFA (download the code and put it in useful_code, follow the instruction to download model and setup the code)

Environment setup:

I use miniconda to setup virtual environment

  • Create a virtual enviroment named RI_render (you can choose your own name): conda create -n RI_render python=3.6
  • Install pytorch: conda install pytorch torchvision cudatoolkit=9.2 -c pytorch -n RI_render
  • Install dlib: conda install -c conda-forge dlib -n RI_render
  • Install opencv: conda install -n RI_render -c conda-forge opencv
  • Install scipy: conda install -n RI_render -c conda-forge scipy
  • Install matplotlib: conda install -n RI_render -c conda-forge matplotlib
  • Install cython: conda install -n RI_render -c anaconda cython
  • Compile 3DDFA as mentioned in the github webpage
  • Compile cython in utils/cython, follow the readme file
  • Install Delaunay Triangulation:
  • Install libigl:
  • Install shtools: https://github.com/SHTOOLS/SHTOOLS
  • Install cvxpy: conda install -c conda-forge cvxpy

Steps for rendering

  1. fitting 3DDFA: run bash run_fit.sh, will generate several files in result: *_3DDFA.png: draw 2D landmark on face *_depth.png: depth image *_detected.txt: detected 2D landmark on faces *_project.txt: projected 3D landmark *.obj: fitted mesh

  2. run bash run_render.sh generate albedo, normal, uv map and semantic segmentation: *_new.obj: obj file for rendering in render: *.png show generate images *.npy show original file of albedo, normal, uv map and semantic segmentation. NOTE: if you can install OpenEXR, you can save npy as .exr file

  3. run bash run_node.sh Apply arap to further align faces in render: generate arap.obj an object of arap algorithm *.node and *.ele temperal files for applying arap

  4. run bash run_warp.sh create warped albedo, normal, semantic segmentation in result/warp:

  5. run bash run_fillHoles.sh remove ear and neck region and fill in holes in generated normal map: create full_normal_faceRegion_faceBoundary_extend.npy and full_normal_faceRegion_faceBoundary_extend.png in result/warp

  6. run bash run_relight.sh relighting faces download our processed bip2017 lighting through (https://drive.google.com/open?id=1l0SiR10jBqACiOeAvsXSXAufUtZ-VhxC), change line 155 in script_relighting.py to poit to the lighting folder Apply face semantic segmentation to get skin region of the face: https://github.com/Liusifei/Face_Parsing_2016 save the results in folder face_parsing/ (examples are shown in face_parsing, you can also skip this by adapting the code of script_relighting.py)

Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022