YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

Overview

YOLOv5-Paddle

YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle

Readme Card

  • 支持AutoBatch
  • 支持AutoAnchor
  • 支持GPU Memory

快速开始

使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePaddle2.2.0-gpu version)

需要安装额外模块

pip install gputil==1.4.0
pip install pycocotools
COCO数据集

数据集已挂载至aistudio项目中,如果需要本地训练可以从这里下载数据集,和标签文件

Data
|-- coco
|   |-- annotions
|   |-- images
|      |-- train2017
|      |-- val2017
|      |-- test2017
|   |-- labels
|      |-- train2017
|      |-- val2017
|      |-- train2017.cache(初始解压可删除,训练时会自动生成)
|      |-- val2017.cache(初始解压可删除,训练时会自动生成)
|   |-- test-dev2017.txt
|   |-- val2017.txt
|   |-- train2017.txt
`   `-- validation

修改data/coco.yaml配置自己的coco路径,你可能需要修改path变量

path: /home/aistudio/Data/coco  # dataset root dir

训练

  • 考虑到AIStudio对于github的访问速度,预先提供了Arial.ttf

  • AIStudio后端不支持绘图,部分可视乎在AIStudio仓库被注释

training scratch for coco

mkdir /home/aistudio/.config/QuanhaoGuo/
cp /home/aistudio/Arial.ttf /home/aistudio/.config/QuanhaoGuo/
cd YOLOv5-Paddle
python train.py --img 896 --batch 8 --epochs 300 --data ./data/coco.yaml --cfg yolov5s.yaml --weights ''

验证

python val.py --img 640  --data ./data/coco.yaml --weights ./weights/yolov5s.pdparams --cfg yolov5s.yaml

通过--task [val/test]控制验证集和测试集

所有提供的模型验证精度如下,本仓库的所有资源文件包括预训练模型均可在百度云盘下载code:dng9

Model size
(pixels)
mAPval
0.5:0.95
mAPval
0.5
params
(M)
FLOPs
@640 (B)
mAPtest
0.5:0.95
mAPtest
0.5
YOLOv5n 640 28.4 46.5 1.9 4.5 28.1 46.2
YOLOv5s 640 37.2 56.4 7.2 16.5 37.1 56.1
YOLOv5m 640 45.1 64.2 21.2 49.0 45.4 64.3
YOLOv5l 640 48.6 67.4 46.5 109.1 48.9 67.5
YOLOv5x 640 50.6 69.1 86.7 205.7 0.507 0.690
YOLOv5n6 1280 34.0 51.1 3.2 4.6 34.3 51.7
YOLOv5s6 1280 44.5 63.4 16.8 12.6 44.3 63.0
YOLOv5m6 1280 50.9 69.4 35.7 50.0 51.1 69.5
YOLOv5l6 1280 53.5 71.8 76.8 111.4 53.7 71.8
YOLOv5x6
+ [TTA][TTA]
1280
1536
54.6
55.2
72.6
73.0
140.7
-
209.8
-
55.0
55.8
73.0
73.5

使用本地环境快速构建YOLOv5训练(PaddlePaddle2.2.0-gpu version)

git clone https://github.com/GuoQuanhao/YOLOv5-Paddle

然后按照使用AIStudio高性能环境快速构建YOLOv5训练执行

训练Custom Data

这里以一个类别的光栅数据集为例,数据集已上传至AIStudio

其组织结构如下:

Data
|-- guangshan
|   |-- images
|      |-- train
|      |-- val
|   |-- labels
|      |-- train
|      |-- val
|   |-- val.txt
|   |-- train.txt

另外你需要构建data/guangshan.yaml,相关文件已放入相关目录,主要用于指定数据集读取路径和模型配置。

# YOLOv5 reproduction 🚀 by GuoQuanhao

train: /home/aistudio/guangshan/images/train  # 118287 images
val: /home/aistudio/guangshan/images/val  # 5000 images
# number of classes
nc: 1
# class names
names: ['spectrum']

训练

python train.py --img 640 --batch 16 --epochs 100 --data ./data/guangshan.yaml --cfg yolov5s.yaml --weights ./weights/yolov5s.pdparams
Starting training for 100 epochs...

     Epoch   gpu_mem       box       obj       cls    labels  img_size
      0/99     4.19G    0.1039   0.04733         0        29       640: 100%|████████████████████████████████████████████████████████████████████| 9/9 [01:43<00:00, 11.50s/it]
               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100%|████████████████████████████████████████████████████| 1/1 [00:06<00:00,  6.64s/it]
                 all         16         29      0.266      0.379      0.226     0.0468

     Epoch   gpu_mem       box       obj       cls    labels  img_size
      1/99     4.41G   0.08177    0.0289         0        37       640: 100%|████████████████████████████████████████████████████████████████████| 9/9 [01:40<00:00, 11.20s/it]
               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100%|████████████████████████████████████████████████████| 1/1 [00:05<00:00,  5.49s/it]
                 all         16         29      0.462      0.445      0.398      0.109
......

完整的训练日志存在data/training.txt

利用VisualDL可视化训练过程

visualdl --logdir ./runs/train/exp

验证

python val.py --img 640  --data ./data/guangshan.yaml --cfg yolov5s.yaml --weights ./runs/train/exp/weights/best.pdparams

推理

python detect.py --weights ./runs/train/exp/weights/best.pdparams --cfg yolov5s.yaml --data ./data/guangshan.yaml --source ./data/images/guangshan.jpg

TODO

  • Multi-GPU Training ☘️
  • PaddleLite inference 🌟
  • Model to ONNX

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
主页 Deep Hao的主页
github Deep Hao的github
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!
You might also like...
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

Drone detection using YOLOv5
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Add gui for YoloV5 using PyQt5
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

A program to recognize fruits on pictures or videos using yolov5
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

Object detection and instance segmentation toolkit based on PaddlePaddle.
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

Comments
  • train相关问题

    train相关问题

    作者您好,我在使用您的数据集训练YOLOv5n模型时,出现一个警告: Epoch gpu_mem box obj cls labels img_size 1/99 1.94G 0.09787 0.5162 0 679 640: 100%|███████████████████████████████████████████████████████████████████████| 57/57 [04:48<00:00, 5.05s/it] Class Images Labels P R [email protected] [email protected]:.95: 25%|██████████████▎ | 1/4 [00:17<00:53, 17.96s/it]/mnt/YOLOv5-Paddle-main/utils/loss.py:191: RuntimeWarning: divide by zero encountered in true_divide j = np.maximum(r, 1 / r).max(2) < self.hyp['anchor_t'] # compare Class Images Labels P R [email protected] [email protected]:.95: 100%|█████████████████████████████████████████████████████████| 4/4 [00:50<00:00, 12.56s/it] all 50 7742 0.571 0.664 0.579 0.188

    训练集为450,验证集为50,训练的目标只有一类“钢筋” (label: rebar) 想问一下会影响后续的部署使用吗?

    opened by qiujianchen 0
  • resume掉精度问题该怎么解决呢?

    resume掉精度问题该怎么解决呢?

    您好,我在使用您的代码时发现--resume时精度会下降,并且可能需要训练一些epoch才能恢复到之前的精度,请问该如何做才能做到resume时不掉精度呢(因为AIstudio的GPU每天只有8点算力卡,我所使用的数据集训练一个epoch需要一个小时,只能通过resume来完成整个训练过程) image

    图中的第一个39-45是直接resume的结果

    图中的第二个39-48是我认为之前训练时x['learning_rate']和x['momentum']存在,所以尝试在训练开始前给它们赋上warmup结束时的值,但发现效果并未达到预期 for j, x in enumerate(optimizer._param_groups): x['learning_rate'] = np.interp(nw, [0, nw], [hyp['warmup_bias_lr'] if j == 2 else 0.0, scheduler.base_lr * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(nw, [0, nw], [hyp['warmup_momentum'], hyp['momentum']])

    希望能得到您的帮助,谢谢!

    opened by diaoa1900 0
  • ai studio绘图问题

    ai studio绘图问题

    对比了yolov5的源码,绘图部分应该不是ai studio不支持的原因,而是在metrics.py的plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=())函数中,for i, y in enumerate(py.t())编写错误,修改为for i, y in enumerate(py.T)后可以正确绘制PR图

    opened by misaka-network10032 0
Owner
QuanHao Guo
Master at UESTC
QuanHao Guo
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022