This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

Related tags

Deep LearningGPRGNN
Overview

GPRGNN

This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

Hidden state feature extraction is performed by a neural networks using individual node features propagated via GPR. Note that both the GPR weights and parameter set of the neural network are learned simultaneously in an end-to-end fashion (as indicated in red).

The learnt GPR weights of the GPR-GNN on real world datasets. Cora is homophilic while Texas is heterophilic (Here, H stands for the level of homophily defined in the main text, Equation (1)). An interesting trend may be observed: For the heterophilic case the weights alternate from positive to negative with dampening amplitudes. The shaded region corresponds to a 95% confidence interval.

Requirement:

pytorch
pytorch-geometric
numpy

Run experiment with Cora:

go to folder src

python train_model.py --RPMAX 2 \
        --net GPRGNN \
        --train_rate 0.025 \
        --val_rate 0.025 \
        --dataset cora 

Create cSBM dataset:

go to folder src

source create_cSBM_dataset.sh

The total size of cSBM datasets we used is over 1GB hence they are not included in this repository, but we do have a sample of the dataset in data/cSBM_demo. We reccommend you to regenerate these datasets using the format of above script, start its name with 'cSBM_data' and change the parameter to what we choose in section A.10 in Appendix of our paper.

Repreduce results in Table 2:

To reproduce the results in Table 2 of our paper you need to first perform hyperparameter tuning. For details of optimization of all models, please refer to section A.9 in Appendix of our paper. Here are the settings for GPRGNN and APPNP:

We choose random walk path lengths with K = 10 and use a 2-layer (MLP) with 64 hidden units for the NN component. For the GPR weights, we use different initializations including PPR with , or and the default random initialization in pytorch. Similarly, for APPNP we search the optimal . For other hyperparameter tuning, we optimize the learning rate over {0.002, 0.01, 0.05} and weight decay {0.0, 0.0005} for all models.

Here is a list of hyperparameters for your reference:

  • For cora and citeseer, choosing different alpha doesn't make big difference. So you can choose alpha = 0.1.
  • For pubmed, we choose lr = 0.05, alpha = 0.2, wd = 0.0005 and add dprate = 0.5 (dropout for GPR part).
  • For computers, we choose lr = 0.05, alpha = 0.5 and wd = 0.
  • For Photo, we choose lr = 0.01, alpha = 0.5 and wd = 0.
  • For chameleon, we choose lr = 0.05, alpha = 1, wd = 0 and dprate = 0.7.
  • For Actor, we choose lr = 0.01, alpha = 0.9, wd = 0.
  • For squirrel, we choose lr = 0.05, alpha = 0, wd = 0, dprate = 0.7.
  • For Texas, we choose lr = 0.05, alpha = 1, wd = 0.0005.
  • For Cornell, we choose lr = 0.05, alpha = 0.9, wd = 0.0005.

Citation

Please cite our paper if you use this code in your own work:

@inproceedings{
chien2021adaptive,
title={Adaptive Universal Generalized PageRank Graph Neural Network},
author={Eli Chien and Jianhao Peng and Pan Li and Olgica Milenkovic},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=n6jl7fLxrP}
}

Feel free to email us([email protected], [email protected]) if you have any further questions.

Owner
Jianhao
Jianhao
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022