Dataset para entrenamiento de yoloV3 para 4 clases

Overview

Deteccion de objetos en video

Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyecto para añadir la capacidad de detectar objetos en un stream de video en vivo.

YOLO (You Only Look Once o Tú Solo Ves Una Vez, pero TSVUV no suena tan bien) es un modelo el cual esta optimizado para generar detecciones de elementos a una velocidad muy alta, es por eso que es una muy buena opción para usarlo en video. Tanto el entrenamiento como predicciones con este modelo se ven beneficiadas si se cumple con una computadora que tenga una GPU NVIDIA.

Por default este modelo esta pre entrenado para detecta 80 distintos objetos, la lista de estos se encuentra en el archivo data/coco.names

Los pasos a seguir para poder correr detección de objetos en el video de una webcam son los siguientes (La creación del ambiente asume que Anaconda esta instalado en la computadora):

Crear ambiente

Para tener en orden nuestras paqueterias de python primero vamos a crear un ambiente llamado "deteccionobj" el cual tiene la version 3.6 de python

conda create -n deteccionobj python=3.6

Activamos el ambiente deteccionobj para asegurarnos que estemos en el ambiente correcto al momento de hacer la instalación de todas las paqueterias necesarias

source activate deteccionobj

Instalación de las paqueterias

Estando dentro de nuestro ambiente vamos a instalar todas las paqueterias necesarias para correr nuestro detector de objetos en video, la lista de los paqueter y versiones a instalar están dentro del archivo requirements.txt por lo cual instalaremos haciendo referencia a ese archivo

pip install -r requirements.txt

Descargar los pesos del modelo entrenado

Para poder correr el modelo de yolo tendremos que descargar los pesos de la red neuronal, los pesos son los valores que tienen todas las conexiones entre las neuronas de la red neuronal de YOLO, este tipo de modelos son computacionalmente muy pesados de entrenar desde cero por lo cual descargar el modelo pre entrenado es una buena opción.

bash weights/download_weights.sh

Movemos los pesos descargados a la carpeta llamada weights

mv yolov3.weights weights/

Correr el detector de objetos en video

Por ultimo corremos este comando el cual activa la camara web para poder hacer deteccion de video sobre un video "en vivo"

python deteccion_video.py

Modificaciones

Si en vez de correr detección de objetos sobre la webcam lo que quieres es correr el modelo sobre un video que ya fue pre grabado tienes que cambiar el comando para correr el codigo a:

python deteccion_video.py --webcam 0 --directorio_video <directorio_al_video.mp4>

Entrenamiento

Ahora, si lo que quieres es entrenar un modelo con las clases que tu quieras y no utilizar las 80 clases que vienen por default podemos entrenar nuestro propio modelo. Estos son los pasos que deberás seguir:

Primero deberás etiquetar las imagenes con el formato VOC, aqui tengo un video explicando como hacer este etiquetado:

Desde la carpeta config correremos el archivo create_custom_model para generar un archivo .cfg el cual contiene información sobre la red neuronal para correr las detecciones

cd config
bash create_custom_model.sh <Numero_de_clases_a_detectar>
cd ..

Descargamos la estructura de pesos de YOLO para poder hacer transfer learning sobre esos pesos

cd weights
bash download_darknet.sh
cd ..

Poner las imagenes y archivos de metadata en las carpetar necesarias

Las imagenes etiquetadas tienen que estar en el directorio data/custom/images mientras que las etiquetas/metadata de las imagenes tienen que estar en data/custom/labels. Por cada imagen.jpg debe de existir un imagen.txt (metadata con el mismo nombre de la imagen)

El archivo data/custom/classes.names debe contener el nombre de las clases, como fueron etiquetadas, un renglon por clase.

Los archivos data/custom/valid.txt y data/custom/train.txt deben contener la dirección donde se encuentran cada una de las imagenes. Estos se pueden generar con el siguiente comando (estando las imagenes ya dentro de data/custom/images)

python split_train_val.py

Entrenar

python train.py --model_def config/yolov3-custom.cfg --data_config config/custom.data --pretrained_weights weights/darknet53.conv.74 --batch_size 2

Correr deteccion de objetos en video con nuestras clases

python deteccion_video.py --model_def config/yolov3-custom.cfg --checkpoint_model checkpoints/yolov3_ckpt_99.pth --class_path data/custom/classes.names  --weights_path checkpoints/yolov3_ckpt_99.pth  --conf_thres 0.85
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
Woosung Choi 63 Nov 14, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023