Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

Overview

TimeLens: Event-based Video Frame Interpolation

TimeLens

This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper TimeLens: Event-based Video Frame Interpolation by Stepan Tulyakov*, Daniel Gehrig*, Stamatios Georgoulis, Julius Erbach, Mathias Gehrig, Yuanyou Li, and Davide Scaramuzza.

For more information, visit our project page.

Citation

A pdf of the paper is available here. If you use this dataset, please cite this publication as follows:

@Article{Tulyakov21CVPR,
  author        = {Stepan Tulyakov and Daniel Gehrig and Stamatios Georgoulis and Julius Erbach and Mathias Gehrig and Yuanyou Li and
                  Davide Scaramuzza},
  title         = {{TimeLens}: Event-based Video Frame Interpolation},
  journal       = "IEEE Conference on Computer Vision and Pattern Recognition",
  year          = 2021,
}

Google Colab

A Google Colab notebook is now available here. You can upsample your own video and events from you gdrive.

Gallery

For more examples, visit our project page.

coke paprika pouring water_bomb_floor

Installation

Install the dependencies with

cuda_version=10.2
conda create -y -n timelens python=3.7
conda activate timelens
conda install -y pytorch torchvision cudatoolkit=$cuda_version -c pytorch
conda install -y -c conda-forge opencv scipy tqdm click

Test TimeLens

First start by cloning this repo into a new folder

mkdir ~/timelens/
cd ~/timelens
git clone https://github.com/uzh-rpg/rpg_timelens

Then download the checkpoint and data to the repo

cd rpg_timelens
wget http://rpg.ifi.uzh.ch/timelens/data/checkpoint.bin
wget http://rpg.ifi.uzh.ch/timelens/data/example_github.zip
unzip example_github.zip 
rm -rf example_github.zip

Running Timelens

To run timelens simply call

skip=0
insert=7
python -m timelens.run_timelens checkpoint.bin example/events example/images example/output $skip $insert

This will generate the output in example/output. The first four variables are the checkpoint file, image folder and event folder and output folder respectively. The variables skip and insert determine the number of skipped vs. inserted frames, i.e. to generate a video with an 8 higher framerate, 7 frames need to be inserted, and 0 skipped.

The resulting images can be converted to a video with

ffmpeg -i example/output/%06d.png timelens.mp4

the resulting video is timelens.mp4.

Dataset

hsergb

Download the dataset from our project page. The dataset structure is as follows

.
├── close
│   └── test
│       ├── baloon_popping
│       │   ├── events_aligned
│       │   └── images_corrected
│       ├── candle
│       │   ├── events_aligned
│       │   └── images_corrected
│       ...
│
└── far
    └── test
        ├── bridge_lake_01
        │   ├── events_aligned
        │   └── images_corrected
        ├── bridge_lake_03
        │   ├── events_aligned
        │   └── images_corrected
        ...

Each events_aligned folder contains events files with template filename %06d.npz, and images_corrected contains image files with template filename %06d.png. In events_aligned each event file with index n contains events between images with index n-1 and n, i.e. event file 000001.npz contains events between images 000000.png and 000001.png. Moreover, images_corrected also contains timestamp.txt where image timestamps are stored. Note that in some folders there are more image files than event files. However, the image stamps in timestamp.txt should match with the event files and the additional images can be ignored.

For a quick test download the dataset to a folder using the link sent by email.

wget download_link.zip -O /tmp/dataset.zip
unzip /tmp/dataset.zip -d hsergb/

And run the test

python test_loader.py --dataset_root hsergb/ \ 
                      --dataset_type close \ 
                      --sequence spinning_umbrella \ 
                      --sample_index 400

This should open a window visualizing aligned events with a single image.

Owner
Robotics and Perception Group
Robotics and Perception Group
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022