SARS-Cov-2 Recombinant Finder for fasta sequences

Overview

Sc2rf - SARS-Cov-2 Recombinant Finder

Pronounced: Scarf

What's this?

Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new virus lineages that have (partial) genes from more than one parent lineage.

Is it already usable?

This is a very young project, started on March 5th, 2022. As such, proceed with care. Results may be wrong or misleading, and with every update, anything can still change a lot.

Anyway, I'm happy that scientists are already seeing benefits from Sc2rf and using it to prepare lineage proposals for cov-lineages/pango-designation.

Though I already have a lot of ideas and plans for Sc2rf (see at the bottom of this document), I'm very open for suggestions and feature requests. Please write an issue, start a discussion or get in touch via mail or twitter!

Example output

Screenshot of the terminal output of Sc2rf

Requirements and Installation

You need at least Python 3.6 and you need to install the requirements first. You might use something like python3 -m pip install -r requirements.txt to do that. There's a setup.py which you should probably ignore, since it's work in progress and does not work as intented yet.

Also, you need a terminal which supports ANSI control sequences to display colored text. On Linux, MacOS, etc. it should probably work.

On Windows, color support is tricky. On a recent version of Windows 10, it should work, but if it doesn't, install Windows Terminal from GitHub or Microsoft Store and run it from there.

Basic Usage

Start with a .fasta file with one or more sequences which might contain recombinants. Your sequences have to be aligned to the reference.fasta. If they are not, you will get an error message like:

Sequence hCoV-19/Phantasialand/EFWEFWD not properly aligned, length is 29718 instead of 29903.

(For historical reasons, I always used Nextclade to get aligned sequences, but you might also use Nextalign or any other tool. Installing them is easy on Linux or MacOS, but not on Windows. You can also use a web-based tool like MAFFT.)

Then call:

sc2rf.py <your_filename.fasta>

If you just need some fasta files for testing, you can search the pango-lineage proposals for recombinant issues with fasta-files, or take some files from my shared-sequences repository, which might not contain any actual recombinants, but hundreds of sequences that look like they were!

No output / some sequences not shown

By default, a lot filters are active to show only the likely recombinants, so that you can input 10000s of sequences and just get output for the interesting ones. If you want, you can disable all filters like that, which is only recommended for small input files with less than 100 sequences:

sc2rf.py --parents 1-35 --breakpoints 0-100 \
--unique 1 --max-ambiguous 10000 <your_filename.fasta>

or even

sc2rf.py --parents 1-35 --breakpoints 0-100 \
--unique 1 --max-ambiguous 10000 --force-all-parents \
--clades all <your_filename.fasta>

The meaning of these parameters is described below.

Advanced Usage

You can execute sc2rf.py -h to get excactly this help message:

usage: sc2rf.py [-h] [--primers [PRIMER ...]]
                [--primer-intervals [INTERVAL ...]]
                [--parents INTERVAL] [--breakpoints INTERVAL]
                [--clades [CLADES ...]] [--unique NUM]
                [--max-intermission-length NUM]
                [--max-intermission-count NUM]
                [--max-name-length NUM] [--max-ambiguous NUM]
                [--force-all-parents]
                [--select-sequences INTERVAL]
                [--enable-deletions] [--show-private-mutations]
                [--rebuild-examples] [--mutation-threshold NUM]
                [--add-spaces [NUM]] [--sort-by-id [NUM]]
                [--verbose] [--ansi] [--hide-progress]
                [--csvfile CSVFILE]
                [input ...]

Analyse SARS-CoV-2 sequences for potential, unknown recombinant
variants.

positional arguments:
  input                 input sequence(s) to test, as aligned
                        .fasta file(s) (default: None)

optional arguments:
  -h, --help            show this help message and exit

  --primers [PRIMER ...]
                        Filenames of primer set(s) to visualize.
                        The .bed formats for ARTIC and EasySeq
                        are recognized and supported. (default:
                        None)

  --primer-intervals [INTERVAL ...]
                        Coordinate intervals in which to
                        visualize primers. (default: None)

  --parents INTERVAL, -p INTERVAL
                        Allowed number of potential parents of a
                        recombinant. (default: 2-4)

  --breakpoints INTERVAL, -b INTERVAL
                        Allowed number of breakpoints in a
                        recombinant. (default: 1-4)

  --clades [CLADES ...], -c [CLADES ...]
                        List of variants which are considered as
                        potential parents. Use Nextstrain clades
                        (like "21B"), or Pango Lineages (like
                        "B.1.617.1") or both. Also accepts "all".
                        (default: ['20I', '20H', '20J', '21I',
                        '21J', 'BA.1', 'BA.2', 'BA.3'])

  --unique NUM, -u NUM  Minimum of substitutions in a sample
                        which are unique to a potential parent
                        clade, so that the clade will be
                        considered. (default: 2)

  --max-intermission-length NUM, -l NUM
                        The maximum length of an intermission in
                        consecutive substitutions. Intermissions
                        are stretches to be ignored when counting
                        breakpoints. (default: 2)

  --max-intermission-count NUM, -i NUM
                        The maximum number of intermissions which
                        will be ignored. Surplus intermissions
                        count towards the number of breakpoints.
                        (default: 8)

  --max-name-length NUM, -n NUM
                        Only show up to NUM characters of sample
                        names. (default: 30)

  --max-ambiguous NUM, -a NUM
                        Maximum number of ambiguous nucs in a
                        sample before it gets ignored. (default:
                        50)

  --force-all-parents, -f
                        Force to consider all clades as potential
                        parents for all sequences. Only useful
                        for debugging.

  --select-sequences INTERVAL, -s INTERVAL
                        Use only a specific range of input
                        sequences. DOES NOT YET WORK WITH
                        MULTIPLE INPUT FILES. (default: 0-999999)

  --enable-deletions, -d
                        Include deletions in lineage comparision.

  --show-private-mutations
                        Display mutations which are not in any of
                        the potential parental clades.

  --rebuild-examples, -r
                        Rebuild the mutations in examples by
                        querying cov-spectrum.org.

  --mutation-threshold NUM, -t NUM
                        Consider mutations with a prevalence of
                        at least NUM as mandatory for a clade
                        (range 0.05 - 1.0, default: 0.75).

  --add-spaces [NUM]    Add spaces between every N colums, which
                        makes it easier to keep your eye at a
                        fixed place. (default without flag: 0,
                        default with flag: 5)

  --sort-by-id [NUM]    Sort the input sequences by the ID. If
                        you provide NUM, only the first NUM
                        characters are considered. Useful if this
                        correlates with meaning full meta
                        information, e.g. the sequencing lab.
                        (default without flag: 0, default with
                        flag: 999)

  --verbose, -v         Print some more information, mostly
                        useful for debugging.

  --ansi                Use only ASCII characters to be
                        compatible with ansilove.

  --hide-progress       Don't show progress bars during long
                        task.

  --csvfile CSVFILE     Path to write results in CSV format.
                        (default: None)

An Interval can be a single number ("3"), a closed interval
("2-5" ) or an open one ("4-" or "-7"). The limits are inclusive.
Only positive numbers are supported.

Interpreting the output

To be written...

There already is a short Twitter thread which explains the basics.

Source material attribution

  • virus_properties.json contains data from LAPIS / cov-spectrum which uses data from NCBI GenBank, prepared and hosted by Nextstrain, see blog post.
  • reference.fasta is taken from Nextstrain's nextclade_data, see NCBI for attribution.
  • mapping.csv is a modified version of the table on the covariants homepage by Nextstrain.
  • Example output / screenshot based on Sequences published by the German Robert-Koch-Institut.
  • Primers:
    • ARTIC primers CC-BY-4.0 by the ARTICnetwork project
    • EasySeq primers by Coolen, J. P., Wolters, F., Tostmann, A., van Groningen, L. F., Bleeker-Rovers, C. P., Tan, E. C., ... & Melchers, W. J. Removed until I understand the format if the .bed file. There will be an issue soon.
    • midnight primers CC-BY-4.0 by Silander, Olin K, Massey University

The initial version of this program was written in cooperation with @flauschzelle.

TODO / IDEAS / PLANS

  • Move these TODOs into actual issues
  • add disclaimer and link to pango-designation
  • provide a sample file (maybe both .fasta and .csv, as long as the csv step is still needed)
  • accept aligned fasta
    • as input file
    • as piped stream
  • If we still accept csv/ssv input, autodetect the delimiter either by file name or by analysing the first line
  • find a way to handle already designated recombinant lineages
  • Output structured results
    • csv
    • html?
    • fasta of all sequences that match the criteria, which enables efficient multi-pass strategies
  • filter sequences
    • by ID
    • by metadata
  • take metadata csv
  • document the output in README
  • check / fix --enabled-deletions
  • adjustable threshold for mutation prevalence
  • new color mode (with background color and monochrome text on top)
  • new bar mode (with colored lines beneath each sequence, one for each example sequence, and "intermissions" shown in the color of the "surrounding" lineage, but not as bright)
  • interactive mode, for filtering, reordering, etc.
  • sort sequences within each block
  • re-think this whole "intermission" concept
  • select a single sequence and let the tool refine the choice of parental sequences, not just focusing on commonly known lineages (going up and down in the tree)
  • use more common terms to describe things (needs feedback from people with actual experience in the field)
Owner
Lena Schimmel
Lena Schimmel
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022