Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Overview

Vehicle Detection

Video demo

png

Overview

Vehicle detection using these machine learning and computer vision techniques.

  • Linear SVM
  • HOG(Histogram of Oriented Gradients) feature extraction
  • Color space conversion
  • Space binning
  • Histogram of color extraction
  • Sliding Window

Note

First, you need to get training data(cars and not-cars). You can get car images from GTI vehicle image database, KITTI vision benchmark). And over 1500 images per each is good for this project.

Dependencies

  • Python >= 3.4

Set up environment

pip install -r requirements.txt

Run jupyter notebook

jupyter notebook

Defining utility functions

import glob
import time
import cv2
import numpy as np
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from skimage.feature import hog
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler
from skimage.feature import hog
%matplotlib inline
# a function to extract features from a list of images
def extract_features(imgs, color_space='RGB', spatial_size=(32, 32),
                        hist_bins=32, orient=9,
                        pix_per_cell=8, cell_per_block=2, hog_channel=0,
                        spatial_feat=True, hist_feat=True, hog_feat=True):
    # Create a list to append feature vectors to
    features = []
    # Iterate through the list of images
    for file in imgs:
        file_features = []
        # Read in each one by one
        image = mpimg.imread(file)
        # apply color conversion if other than 'RGB'
        if color_space != 'RGB':
            if color_space == 'HSV':
                feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
            elif color_space == 'LUV':
                feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2LUV)
            elif color_space == 'HLS':
                feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
            elif color_space == 'YUV':
                feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
            elif color_space == 'YCrCb':
                feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb)
        else: feature_image = np.copy(image)      

        if spatial_feat == True:
            spatial_features = bin_spatial(feature_image, size=spatial_size)
            file_features.append(spatial_features)
        if hist_feat == True:
            # Apply color_hist()
            hist_features = color_hist(feature_image, nbins=hist_bins)
            file_features.append(hist_features)
        if hog_feat == True:
        # Call get_hog_features() with vis=False, feature_vec=True
            if hog_channel == 'ALL':
                hog_features = []
                for channel in range(feature_image.shape[2]):
                    hog_features.append(get_hog_features(feature_image[:,:,channel],
                                        orient, pix_per_cell, cell_per_block,
                                        vis=False, feature_vec=True))
                hog_features = np.ravel(hog_features)        
            else:
                hog_features = get_hog_features(feature_image[:,:,hog_channel], orient,
                            pix_per_cell, cell_per_block, vis=False, feature_vec=True)
            # Append the new feature vector to the features list
            file_features.append(hog_features)
        features.append(np.concatenate(file_features))
    # Return list of feature vectors
    return features

def get_hog_features(img, orient, pix_per_cell, cell_per_block,
                        vis=False, feature_vec=True):
    # Call with two outputs if vis==True
    if vis == True:
        features, hog_image = hog(img, orientations=orient,
                                  pixels_per_cell=(pix_per_cell, pix_per_cell),
                                  cells_per_block=(cell_per_block, cell_per_block),
                                  transform_sqrt=False,
                                  visualise=vis, feature_vector=feature_vec)
        return features, hog_image
    # Otherwise call with one output
    else:      
        features = hog(img, orientations=orient,
                       pixels_per_cell=(pix_per_cell, pix_per_cell),
                       cells_per_block=(cell_per_block, cell_per_block),
                       transform_sqrt=False,
                       visualise=vis, feature_vector=feature_vec)
        return features

def bin_spatial(img, size=(32, 32)):
    color1 = cv2.resize(img[:,:,0], size).ravel()
    color2 = cv2.resize(img[:,:,1], size).ravel()
    color3 = cv2.resize(img[:,:,2], size).ravel()
    return np.hstack((color1, color2, color3))

def color_hist(img, nbins=32):    #bins_range=(0, 256)
    # Compute the histogram of the color channels separately
    channel1_hist = np.histogram(img[:,:,0], bins=nbins)
    channel2_hist = np.histogram(img[:,:,1], bins=nbins)
    channel3_hist = np.histogram(img[:,:,2], bins=nbins)
    # Concatenate the histograms into a single feature vector
    hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
    # Return the individual histograms, bin_centers and feature vector
    return hist_features

Collecting data

# Get image file names
images = glob.glob('./training-data/*/*/*.png')
cars = []
notcars = []
all_cars = []
all_notcars = []

for image in images:
    if 'nonvehicle' in image:
        all_notcars.append(image)
    else:
        all_cars.append(image)

# Get only 1/5 of the training data to avoid overfitting
for ix, notcar in enumerate(all_notcars):
    if ix % 5 == 0:
        notcars.append(notcar)

for ix, car in enumerate(all_cars):
    if ix % 5 == 0:
        cars.append(car)

car_image = mpimg.imread(cars[5])
notcar_image = mpimg.imread(notcars[0])

def compare_images(image1, image2, image1_exp="Image 1", image2_exp="Image 2"):
    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3))
    f.tight_layout()
    ax1.imshow(image1)
    ax1.set_title(image1_exp, fontsize=20)
    ax2.imshow(image2)
    ax2.set_title(image2_exp, fontsize=20)
    plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)

compare_images(car_image, notcar_image, "Car", "Not Car")

png

Extracting features

color_space = 'YUV' # Can be RGB, HSV, LUV, HLS, YUV, YCrCb
orient = 15  # HOG orientations
pix_per_cell = 8 # HOG pixels per cell
cell_per_block = 2 # HOG cells per block
hog_channel = "ALL" # Can be 0, 1, 2, or "ALL"
spatial_size = (32, 32) # Spatial binning dimensions
hist_bins = 32    # Number of histogram bins
spatial_feat = True # Spatial features on or off
hist_feat = True # Histogram features on or off
hog_feat = True # HOG features on or off

converted_car_image = cv2.cvtColor(car_image, cv2.COLOR_RGB2YUV)
car_ch1 = converted_car_image[:,:,0]
car_ch2 = converted_car_image[:,:,1]
car_ch3 = converted_car_image[:,:,2]

converted_notcar_image = cv2.cvtColor(notcar_image, cv2.COLOR_RGB2YUV)
notcar_ch1 = converted_notcar_image[:,:,0]
notcar_ch2 = converted_notcar_image[:,:,1]
notcar_ch3 = converted_notcar_image[:,:,2]

car_hog_feature, car_hog_image = get_hog_features(car_ch1,
                                        orient, pix_per_cell, cell_per_block,
                                        vis=True, feature_vec=True)

notcar_hog_feature, notcar_hog_image = get_hog_features(notcar_ch1,
                                        orient, pix_per_cell, cell_per_block,
                                        vis=True, feature_vec=True)

car_ch1_features = cv2.resize(car_ch1, spatial_size)
car_ch2_features = cv2.resize(car_ch2, spatial_size)
car_ch3_features = cv2.resize(car_ch3, spatial_size)
notcar_ch1_features = cv2.resize(notcar_ch1, spatial_size)
notcar_ch2_features = cv2.resize(notcar_ch2, spatial_size)
notcar_ch3_features = cv2.resize(notcar_ch3, spatial_size)

def show_images(image1, image2, image3, image4,  image1_exp="Image 1", image2_exp="Image 2", image3_exp="Image 3", image4_exp="Image 4"):
    f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(24, 9))
    f.tight_layout()
    ax1.imshow(image1)
    ax1.set_title(image1_exp, fontsize=20)
    ax2.imshow(image2)
    ax2.set_title(image2_exp, fontsize=20)
    ax3.imshow(image3)
    ax3.set_title(image3_exp, fontsize=20)
    ax4.imshow(image4)
    ax4.set_title(image4_exp, fontsize=20)
    plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)

show_images(car_ch1, car_hog_image, notcar_ch1, notcar_hog_image, "Car ch 1", "Car ch 1 HOG", "Not Car ch 1", "Not Car ch 1 HOG")    
show_images(car_ch1, car_ch1_features, notcar_ch1, notcar_ch1_features, "Car ch 1", "Car ch 1 features", "Not Car ch 1", "Not Car ch 1 features")    
show_images(car_ch2, car_ch2_features, notcar_ch2, notcar_ch2_features, "Car ch 2", "Car ch 2 features", "Not Car ch 2", "Not Car ch 2 features")    
show_images(car_ch3, car_ch3_features, notcar_ch3, notcar_ch3_features, "Car ch 3", "Car ch 3 features", "Not Car ch 3", "Not Car ch 3 features")    
/Users/hatanaka/anaconda3/envs/carnd-term1/lib/python3.5/site-packages/skimage/feature/_hog.py:119: skimage_deprecation: Default value of `block_norm`==`L1` is deprecated and will be changed to `L2-Hys` in v0.15
  'be changed to `L2-Hys` in v0.15', skimage_deprecation)

png

png

png

png

Training classifier

car_features = extract_features(cars, color_space=color_space,
                        spatial_size=spatial_size, hist_bins=hist_bins,
                        orient=orient, pix_per_cell=pix_per_cell,
                        cell_per_block=cell_per_block,
                        hog_channel=hog_channel, spatial_feat=spatial_feat,
                        hist_feat=hist_feat, hog_feat=hog_feat)
notcar_features = extract_features(notcars, color_space=color_space,
                        spatial_size=spatial_size, hist_bins=hist_bins,
                        orient=orient, pix_per_cell=pix_per_cell,
                        cell_per_block=cell_per_block,
                        hog_channel=hog_channel, spatial_feat=spatial_feat,
                        hist_feat=hist_feat, hog_feat=hog_feat)

X = np.vstack((car_features, notcar_features)).astype(np.float64)                        
# Fit a per-column scaler
X_scaler = StandardScaler().fit(X)
# Apply the scaler to X
scaled_X = X_scaler.transform(X)

# Define the labels vector
y = np.hstack((np.ones(len(car_features)), np.zeros(len(notcar_features))))

# Split up data into randomized training and test sets
rand_state = np.random.randint(0, 100)
X_train, X_test, y_train, y_test = train_test_split(
    scaled_X, y, test_size=0.2, random_state=rand_state)

print('Using:',orient,'orientations',pix_per_cell,
    'pixels per cell and', cell_per_block,'cells per block')
print('Feature vector length:', len(X_train[0]))
# Use a linear SVC
svc = LinearSVC()
# Check the training time for the SVC
t=time.time()
svc.fit(X_train, y_train)
t2 = time.time()
print(round(t2-t, 2), 'Seconds to train SVC...')
# Check the score of the SVC
print('Test Accuracy of SVC = ', round(svc.score(X_test, y_test), 4))
# Check the prediction time for a single sample
t=time.time()
/Users/hatanaka/anaconda3/envs/carnd-term1/lib/python3.5/site-packages/skimage/feature/_hog.py:119: skimage_deprecation: Default value of `block_norm`==`L1` is deprecated and will be changed to `L2-Hys` in v0.15
  'be changed to `L2-Hys` in v0.15', skimage_deprecation)


Using: 15 orientations 8 pixels per cell and 2 cells per block
Feature vector length: 11988
2.56 Seconds to train SVC...
Test Accuracy of SVC =  0.9789

Sliding window

def convert_color(img, conv='RGB2YCrCb'):
    if conv == 'RGB2YCrCb':
        return cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
    if conv == 'BGR2YCrCb':
        return cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
    if conv == 'RGB2LUV':
        return cv2.cvtColor(img, cv2.COLOR_RGB2LUV)
    if conv == 'RGB2YUV':
        return cv2.cvtColor(img, cv2.COLOR_RGB2YUV)

def find_cars(img, ystart, ystop, scale, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins):

    draw_img = np.copy(img)
    img = img.astype(np.float32)/255

    img_tosearch = img[ystart:ystop,:,:]  # sub-sampling
    ctrans_tosearch = convert_color(img_tosearch, conv='RGB2YUV')
    if scale != 1:
        imshape = ctrans_tosearch.shape
        ctrans_tosearch = cv2.resize(ctrans_tosearch, (np.int(imshape[1]/scale), np.int(imshape[0]/scale)))

    ch1 = ctrans_tosearch[:,:,0]
    ch2 = ctrans_tosearch[:,:,1]
    ch3 = ctrans_tosearch[:,:,2]

    # Define blocks and steps as above
    nxblocks = (ch1.shape[1] // pix_per_cell) - cell_per_block + 1
    nyblocks = (ch1.shape[0] // pix_per_cell) - cell_per_block + 1
    nfeat_per_block = orient*cell_per_block**2

    # 64 was the orginal sampling rate, with 8 cells and 8 pix per cell
    window = 64
    nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1
    #nblocks_per_window = (window // pix_per_cell)-1

    cells_per_step = 2  # Instead of overlap, define how many cells to step
    nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
    nysteps = (nyblocks - nblocks_per_window) // cells_per_step

    # Compute individual channel HOG features for the entire image
    hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=False)
    hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=False)
    hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=False)

    bboxes = []
    for xb in range(nxsteps):
        for yb in range(nysteps):
            ypos = yb*cells_per_step
            xpos = xb*cells_per_step
            # Extract HOG for this patch
            hog_feat1 = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
            hog_feat2 = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
            hog_feat3 = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
            hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))

            xleft = xpos*pix_per_cell
            ytop = ypos*pix_per_cell

            # Extract the image patch
            subimg = cv2.resize(ctrans_tosearch[ytop:ytop+window, xleft:xleft+window], (64,64))

            # Get color features
            spatial_features = bin_spatial(subimg, size=spatial_size)
            hist_features = color_hist(subimg, nbins=hist_bins)

            # Scale features and make a prediction
            test_stacked = np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1)
            test_features = X_scaler.transform(test_stacked)    
            #test_features = scaler.transform(np.array(features).reshape(1, -1))
            #test_features = X_scaler.transform(np.hstack((shape_feat, hist_feat)).reshape(1, -1))    
            test_prediction = svc.predict(test_features)

            if test_prediction == 1:
                xbox_left = np.int(xleft*scale)
                ytop_draw = np.int(ytop*scale)
                win_draw = np.int(window*scale)
                cv2.rectangle(draw_img,(xbox_left, ytop_draw+ystart),(xbox_left+win_draw,ytop_draw+win_draw+ystart),(0,0,255),6)
                bboxes.append(((int(xbox_left), int(ytop_draw+ystart)),(int(xbox_left+win_draw),int(ytop_draw+win_draw+ystart))))

    return draw_img, bboxes

def apply_sliding_window(image, svc, X_scaler, pix_per_cell, cell_per_block, spatial_size, hist_bins):
    bboxes = []
    ystart = 400
    ystop = 500
    out_img, bboxes1 = find_cars(image, ystart, ystop, 1.0, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 400
    ystop = 500
    out_img, bboxes2 = find_cars(out_img, ystart, ystop, 1.3, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 410
    ystop = 500
    out_img, bboxes3 = find_cars(out_img, ystart, ystop, 1.4, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 420
    ystop = 556
    out_img, bboxes4 = find_cars(out_img, ystart, ystop, 1.6, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 430
    ystop = 556
    out_img, bboxes5 = find_cars (out_img, ystart, ystop, 1.8, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 430
    ystop = 556
    out_img, bboxes6 = find_cars (out_img, ystart, ystop, 2.0, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 440
    ystop = 556
    out_img, bboxes7 = find_cars (out_img, ystart, ystop, 1.9, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 400
    ystop = 556
    out_img, bboxes8 = find_cars (out_img, ystart, ystop, 1.3, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 400
    ystop = 556
    out_img, bboxes9 = find_cars (out_img, ystart, ystop, 2.2, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 500
    ystop = 656
    out_img, bboxes10 = find_cars (out_img, ystart, ystop, 3.0, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    bboxes.extend(bboxes1)
    bboxes.extend(bboxes2)
    bboxes.extend(bboxes3)
    bboxes.extend(bboxes4)
    bboxes.extend(bboxes5)
    bboxes.extend(bboxes6)
    bboxes.extend(bboxes7)
    bboxes.extend(bboxes8)
    bboxes.extend(bboxes9)
    bboxes.extend(bboxes10)

    return out_img, bboxes

image1 = mpimg.imread('./test_series/series1.jpg')
image2 = mpimg.imread('./test_series/series2.jpg')
image3 = mpimg.imread('./test_series/series3.jpg')
image4 = mpimg.imread('./test_series/series4.jpg')
image5 = mpimg.imread('./test_series/series5.jpg')
image6 = mpimg.imread('./test_series/series6.jpg')

output_image1, bboxes1 = apply_sliding_window(image1, svc, X_scaler, pix_per_cell, cell_per_block, spatial_size, hist_bins)
output_image2, bboxes2 = apply_sliding_window(image2, svc, X_scaler, pix_per_cell, cell_per_block, spatial_size, hist_bins)
output_image3, bboxes3 = apply_sliding_window(image3, svc, X_scaler, pix_per_cell, cell_per_block, spatial_size, hist_bins)
output_image4, bboxes4 = apply_sliding_window(image4, svc, X_scaler, pix_per_cell, cell_per_block, spatial_size, hist_bins)
output_image5, bboxes5 = apply_sliding_window(image5, svc, X_scaler, pix_per_cell, cell_per_block, spatial_size, hist_bins)
output_image6, bboxes6 = apply_sliding_window(image6, svc, X_scaler, pix_per_cell, cell_per_block, spatial_size, hist_bins)

image = mpimg.imread('./test_images/test4.jpg')
draw_image = np.copy(image)
output_image, bboxes = apply_sliding_window(image, svc, X_scaler, pix_per_cell, cell_per_block, spatial_size, hist_bins)

def show_images(image1, image2, image3,  image1_exp="Image 1", image2_exp="Image 2", image3_exp="Image 3"):
    f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(24, 9))
    f.tight_layout()
    ax1.imshow(image1)
    ax1.set_title(image1_exp, fontsize=20)
    ax2.imshow(image2)
    ax2.set_title(image2_exp, fontsize=20)
    ax3.imshow(image3)
    ax3.set_title(image3_exp, fontsize=20)
    plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)

show_images(output_image1, output_image2, output_image3)
show_images(output_image4, output_image5, output_image6)
/Users/hatanaka/anaconda3/envs/carnd-term1/lib/python3.5/site-packages/skimage/feature/_hog.py:119: skimage_deprecation: Default value of `block_norm`==`L1` is deprecated and will be changed to `L2-Hys` in v0.15
  'be changed to `L2-Hys` in v0.15', skimage_deprecation)

png

png

Creating heatmap

from scipy.ndimage.measurements import label


def add_heat(heatmap, bbox_list):
    # Iterate through list of bboxes
    for box in bbox_list:
        # Add += 1 for all pixels inside each bbox
        # Assuming each "box" takes the form ((x1, y1), (x2, y2))
        heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1

    # Return updated heatmap
    return heatmap# Iterate through list of bboxes

def apply_threshold(heatmap, threshold):
    # Zero out pixels below the threshold
    heatmap[heatmap <= threshold] = 0
    # Return thresholded map
    return heatmap

def draw_labeled_bboxes(img, labels):
    # Iterate through all detected cars
    for car_number in range(1, labels[1]+1):
        # Find pixels with each car_number label value
        nonzero = (labels[0] == car_number).nonzero()
        # Identify x and y values of those pixels
        nonzeroy = np.array(nonzero[0])
        nonzerox = np.array(nonzero[1])
        # Define a bounding box based on min/max x and y
        bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
        # Draw the box on the image
        cv2.rectangle(img, bbox[0], bbox[1], (0,0,255), 6)
    # Return the image
    return img

heat = np.zeros_like(output_image[:,:,0]).astype(np.float)
# Add heat to each box in box list
heat = add_heat(heat, bboxes)

# Apply threshold to help remove false positives
threshold = 1
heat = apply_threshold(heat, threshold)

# Visualize the heatmap when displaying    
heatmap = np.clip(heat, 0, 255)

# Find final boxes from heatmap using label function
labels = label(heatmap)
draw_img = draw_labeled_bboxes(np.copy(image), labels)

def show_images(image1, image2,  image1_exp="Image 1", image2_exp="Image 2"):
    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
    f.tight_layout()
    ax1.imshow(image1)
    ax1.set_title(image1_exp, fontsize=20)
    ax2.imshow(image2, cmap='hot')
    ax2.set_title(image2_exp, fontsize=20)
    plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)

show_images(output_image, heatmap, "Car Positions", "Result")

png

More heatmaps

def get_heatmap(bboxes):
    threshold = 1
    heat = np.zeros_like(output_image[:,:,0]).astype(np.float)
    heat = add_heat(heat, bboxes)
    heat = apply_threshold(heat, threshold)
    heatmap = np.clip(heat, 0, 255)
    return heatmap

def show_images(image1, image2,  image1_exp="Image 1", image2_exp="Image 2"):
    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
    f.tight_layout()
    ax1.imshow(image1)
    ax1.set_title(image1_exp, fontsize=20)
    ax2.imshow(image2, cmap='hot')
    ax2.set_title(image2_exp, fontsize=20)
    plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.)

heatmap1 = get_heatmap(bboxes1)
heatmap2 = get_heatmap(bboxes2)
heatmap3 = get_heatmap(bboxes3)
heatmap4 = get_heatmap(bboxes4)
heatmap5 = get_heatmap(bboxes5)
heatmap6 = get_heatmap(bboxes6)
show_images(output_image1, heatmap1)
show_images(output_image2, heatmap2)
show_images(output_image3, heatmap3)
show_images(output_image4, heatmap4)
show_images(output_image5, heatmap5)
show_images(output_image6, heatmap6)

png

png

png

png

png

png

Labeled image

plt.imshow(labels[0], cmap='gray')
<matplotlib.image.AxesImage at 0x11c9d32e8>

png

Resulting bonding boxes

plt.imshow(draw_img)
<matplotlib.image.AxesImage at 0x11ca0eb38>

png

Applying to video

from collections import deque
history = deque(maxlen = 8)

def detect_cars(image):
    bboxes = []
    ystart = 400
    ystop = 500
    out_img, bboxes1 = find_cars(image, ystart, ystop, 1.0, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 400
    ystop = 500
    out_img, bboxes2 = find_cars(image, ystart, ystop, 1.3, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 410
    ystop = 500
    out_img, bboxes3 = find_cars(out_img, ystart, ystop, 1.4, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 420
    ystop = 556
    out_img, bboxes4 = find_cars(out_img, ystart, ystop, 1.6, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 430
    ystop = 556
    out_img, bboxes5 = find_cars (out_img, ystart, ystop, 1.8, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 430
    ystop = 556
    out_img, bboxes6 = find_cars (out_img, ystart, ystop, 2.0, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 440
    ystop = 556
    out_img, bboxes7 = find_cars (out_img, ystart, ystop, 1.9, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 400
    ystop = 556
    out_img, bboxes8 = find_cars (out_img, ystart, ystop, 1.3, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 400
    ystop = 556
    out_img, bboxes9 = find_cars (out_img, ystart, ystop, 2.2, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    ystart = 500
    ystop = 656
    out_img, bboxes10 = find_cars (out_img, ystart, ystop, 3.0, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins)
    bboxes.extend(bboxes1)
    bboxes.extend(bboxes2)
    bboxes.extend(bboxes3)
    bboxes.extend(bboxes4)
    bboxes.extend(bboxes5)
    bboxes.extend(bboxes6)
    bboxes.extend(bboxes7)
    bboxes.extend(bboxes8)
    bboxes.extend(bboxes9)
    bboxes.extend(bboxes10)

    heat = np.zeros_like(out_img[:,:,0]).astype(np.float)
    # Add heat to each box in box list
    heat = add_heat(heat, bboxes)

    # Apply threshold to help remove false positives
    threshold = 1
    heat = apply_threshold(heat, threshold)

    # Visualize the heatmap when displaying    
    current_heatmap = np.clip(heat, 0, 255)
    history.append(current_heatmap)

    heatmap = np.zeros_like(current_heatmap).astype(np.float)
    for heat in history:
        heatmap = heatmap + heat

    # Find final boxes from heatmap using label function
    labels = label(heatmap)
    draw_img = draw_labeled_bboxes(np.copy(image), labels)

    return draw_img

img = detect_cars(image)
plt.imshow(img)
import imageio
imageio.plugins.ffmpeg.download()
from moviepy.editor import VideoFileClip
from IPython.display import HTML
history = deque(maxlen = 8)
output = 'test_result.mp4'
clip = VideoFileClip("test_video.mp4")
video_clip = clip.fl_image(detect_cars)
%time video_clip.write_videofile(output, audio=False)
[MoviePy] >>>> Building video test_result.mp4
[MoviePy] Writing video test_result.mp4


 97%|█████████▋| 38/39 [00:42<00:01,  1.14s/it]


[MoviePy] Done.
[MoviePy] >>>> Video ready: test_result.mp4

CPU times: user 38.7 s, sys: 3.22 s, total: 41.9 s
Wall time: 44.6 s
history = deque(maxlen = 8)
output = 'result.mp4'
clip = VideoFileClip("project_video.mp4")
video_clip = clip.fl_image(detect_cars)
%time video_clip.write_videofile(output, audio=False)
Owner
hata
hata
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
MohammadReza Sharifi 27 Dec 13, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022