Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

Overview

PyTorch RL Minimal Implementations

There are implementations of some reinforcement learning algorithms, whose characteristics are as follow:

  1. Less packages-based: Only PyTorch and Gym, for building neural networks and testing algorithms' performance respectively, are necessary to install.
  2. Independent implementation: All RL algorithms are implemented in separate files, which facilitates to understand their processes and modify them to adapt to other tasks.
  3. Various expansion configurations: It's convenient to configure various parameters and tools, such as reward normalization, advantage normalization, tensorboard, tqdm and so on.

RL Algorithms List

Name Type Estimator Paper File
Q-Learning Value-based / Off policy TD Watkins et al. Q-Learning. Machine Learning, 1992 q_learning.py
REINFORCE Policy-based On policy MC Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. In NeurIPS, 2000. reinforce.py
DQN Value-based / Off policy TD Mnih et al. Human-level control through deep reinforcement learning. Nature, 2015. doing
A2C Actor-Critic / On policy n-step TD Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. In ICML, 2016. a2c.py
A3C Actor-Critic / On policy n-step TD .Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. In ICML, 2016 a3c.py
ACER Actor-Critic / On policy GAE Wang et al. Sample Efficient Actor-Critic with Experience Replay. In ICLR, 2017. doing
ACKTR Actor-Critic / On policy GAE Wu et al. Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation. In NeurIPS, 2017. doing
PPO Actor-Critic / On policy GAE Schulman et al. Proximal Policy Optimization Algorithms. arXiv, 2017. ppo.py

Quick Start

Requirements

pytorch
gym

tensorboard  # for summary writer
tqdm         # for process bar

Abstract Agent

Components / Parameters

Component Description
policy neural network model
gamma discount factor of cumulative reward
lr learning rate. i.e. lr_actor, lr_critic
lr_decay weight decay to schedule the learning rate
lr_scheduler scheduler for the learning rate
coef_critic_loss coefficient of critic loss
coef_entropy_loss coefficient of entropy loss
writer summary writer to record information
buffer replay buffer to store historical trajectories
use_cuda use GPU
clip_grad gradients clipping
max_grad_norm maximum norm of gradients clipped
norm_advantage advantage normalization
open_tb open summary writer
open_tqdm open process bar

Methods

Methods Description
preprocess_obs() preprocess observation before input into the neural network
select_action() use actor network to select an action based on the policy distribution.
estimate_obs() use critic network to estimate the value of observation
update() update the parameter by calculate losses and gradients
train() set the neural network to train mode
eval() set the neural network to evaluate mode
save() save the model parameters
load() load the model parameters

Update & To-do & Limitations

Update History

  • 2021-12-09 ADD TRICK:norm_critic_loss in PPO
  • 2021-12-09 ADD PARAM: coef_critic_loss, coef_entropy_loss, log_step
  • 2021-12-07 ADD ALGO: A3C
  • 2021-12-05 ADD ALGO: PPO
  • 2021-11-28 ADD ALGO: A2C
  • 2021-11-20 ADD ALGO: Q learning, Reinforce

To-do List

  • ADD ALGO DQN, Double DQN, Dueling DQN, DDPG
  • ADD NN RNN Mode

Current Limitations

  • Unsupport Vectorized environments
  • Unsupport Continuous action space
  • Unsupport RNN-based model
  • Unsupport Imatation learning

Reference & Acknowledgements

Owner
Gemini Light
Gemini Light
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021