Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

Overview

PyTorch RL Minimal Implementations

There are implementations of some reinforcement learning algorithms, whose characteristics are as follow:

  1. Less packages-based: Only PyTorch and Gym, for building neural networks and testing algorithms' performance respectively, are necessary to install.
  2. Independent implementation: All RL algorithms are implemented in separate files, which facilitates to understand their processes and modify them to adapt to other tasks.
  3. Various expansion configurations: It's convenient to configure various parameters and tools, such as reward normalization, advantage normalization, tensorboard, tqdm and so on.

RL Algorithms List

Name Type Estimator Paper File
Q-Learning Value-based / Off policy TD Watkins et al. Q-Learning. Machine Learning, 1992 q_learning.py
REINFORCE Policy-based On policy MC Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. In NeurIPS, 2000. reinforce.py
DQN Value-based / Off policy TD Mnih et al. Human-level control through deep reinforcement learning. Nature, 2015. doing
A2C Actor-Critic / On policy n-step TD Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. In ICML, 2016. a2c.py
A3C Actor-Critic / On policy n-step TD .Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. In ICML, 2016 a3c.py
ACER Actor-Critic / On policy GAE Wang et al. Sample Efficient Actor-Critic with Experience Replay. In ICLR, 2017. doing
ACKTR Actor-Critic / On policy GAE Wu et al. Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation. In NeurIPS, 2017. doing
PPO Actor-Critic / On policy GAE Schulman et al. Proximal Policy Optimization Algorithms. arXiv, 2017. ppo.py

Quick Start

Requirements

pytorch
gym

tensorboard  # for summary writer
tqdm         # for process bar

Abstract Agent

Components / Parameters

Component Description
policy neural network model
gamma discount factor of cumulative reward
lr learning rate. i.e. lr_actor, lr_critic
lr_decay weight decay to schedule the learning rate
lr_scheduler scheduler for the learning rate
coef_critic_loss coefficient of critic loss
coef_entropy_loss coefficient of entropy loss
writer summary writer to record information
buffer replay buffer to store historical trajectories
use_cuda use GPU
clip_grad gradients clipping
max_grad_norm maximum norm of gradients clipped
norm_advantage advantage normalization
open_tb open summary writer
open_tqdm open process bar

Methods

Methods Description
preprocess_obs() preprocess observation before input into the neural network
select_action() use actor network to select an action based on the policy distribution.
estimate_obs() use critic network to estimate the value of observation
update() update the parameter by calculate losses and gradients
train() set the neural network to train mode
eval() set the neural network to evaluate mode
save() save the model parameters
load() load the model parameters

Update & To-do & Limitations

Update History

  • 2021-12-09 ADD TRICK:norm_critic_loss in PPO
  • 2021-12-09 ADD PARAM: coef_critic_loss, coef_entropy_loss, log_step
  • 2021-12-07 ADD ALGO: A3C
  • 2021-12-05 ADD ALGO: PPO
  • 2021-11-28 ADD ALGO: A2C
  • 2021-11-20 ADD ALGO: Q learning, Reinforce

To-do List

  • ADD ALGO DQN, Double DQN, Dueling DQN, DDPG
  • ADD NN RNN Mode

Current Limitations

  • Unsupport Vectorized environments
  • Unsupport Continuous action space
  • Unsupport RNN-based model
  • Unsupport Imatation learning

Reference & Acknowledgements

Owner
Gemini Light
Gemini Light
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021