Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Overview

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Paper on arXiv

Public PyTorch implementation of two-stage peer-regularized feature recombination for arbitrary image style transfer presented at CVPR 2020. The model is trained on a selected set painters and generalizes well even to previously unseen style during testing.

Structure

The repository contains the code that we have used to produce some of the main results in the paper. We have left out additional modifications that were used to generate the ablation studies, etc.

Running examples

In order to get reasonable runtime, the code has to be run on a GPU. The code is multi-gpu ready. We have used 2 GPUs for training and a single GPU during test time. We have been running our code on a Nvidia Titan X (Pascal) 12GB GPU. Basic system requirements are to be found here.

Should you encounter some issues running the code, please first check Known issues and then consider opening a new issue in this repository.

Model training

The provided pre-trained model was trained by running the following command:

python train.py --dataroot photo2painter13 --checkpoints_dir=./checkpoints --dataset_mode=painters13 --name GanAuxModel --model gan_aux
--netG=resnet_residual --netD=disc_noisy --display_env=GanAuxModel --gpu_ids=0,1 --lambda_gen=1.0 --lambda_disc=1.0 --lambda_cycle=1.0
--lambda_cont=1.0 --lambda_style=1.0 --lambda_idt=25.0 --num_style_samples=1 --batch_size=2 --num_threads=8 --fineSize=256 --loadSize=286
--mapping_mode=one_to_all --knn=5 --ml_margin=1.0 --lr=4e-4 --peer_reg=bidir --print_freq=500 --niter=50 --niter_decay=150 --no_html

Model testing

We provide one pre-trained model that you can run and stylize images. The example below will use sample content and style images from the samples/data folder.

The pretrained model was trained on images with resolution 256 x 256, during test time it can however operate on images of arbitrary size. Current memory limitations restrict us to run images of size up to 768 x 768.

python test.py --checkpoints_dir=./samples/models --name GanAuxPretrained --model gan_aux --netG=resnet_residual --netD=disc_noisy
--gpu_ids=0 --num_style_samples=1 --loadSize=512 --fineSize=512 --knn=5 --peer_reg=bidir --epoch=200 --content_folder content_imgs
--style_folder style_imgs --output_folder out_imgs

Datasets

The full dataset that we have used for training is the same one as in this work.

Results

Comparison to existing approaches

Comparison image

Ablation study

Ablation image

Reference

If you make any use of our code or data, please cite the following:

@conference{svoboda2020twostage,
  title={Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer},
  author={Svoboda, J. and Anoosheh, A. and Osendorfer, Ch. and Masci, J.},
  booktitle={Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}

Acknowledgments

The code in this repository is based on pytorch-CycleGAN.

For any reuse and or redistribution of the code in this repository please follow the license agreement attached to this repository.

Owner
NNAISENSE
NNAISENSE
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022