Multitask Learning Strengthens Adversarial Robustness

Related tags

Deep LearningMTRobust
Overview

Multitask Learning Strengthens Adversarial Robustness

@inproceedings{mao2020multitask,
  author    = {Chengzhi Mao and
               Amogh Gupta and
               Vikram Nitin and
               Baishakhi Ray and
               Shuran Song and
               Junfeng Yang and
               Carl Vondrick},
  title     = {Multitask Learning Strengthens Adversarial Robustness},
  booktitle = {Computer Vision - {ECCV} 2020 - 16th European Conference, Glasgow,
               UK, August 23-28, 2020, Proceedings, Part {II}},
  series    = {Lecture Notes in Computer Science},
  volume    = {12347},
  pages     = {158--174},
  publisher = {Springer},
  year      = {2020},
  url       = {https://doi.org/10.1007/978-3-030-58536-5\_10},
  doi       = {10.1007/978-3-030-58536-5\_10},
}

Demo for Robustness under multitask attack

Download Cityscapes dataset from Cityscapes.

Download pretrained DRN-22 model from DRN model zoo.

Modify the path to data and model in demo_mtlrobust.py.

Run demo to see the trend that model overall robustness is increased when the output dimension increased.

To see the gradient norm measurement of robustness, set get_grad=True,

To see the actually robust accuracy for model, set test_acc_output_dim=False

python demo_mtlrobust.py

which explains why segmentation is inherently robust.

CityScape

Data preprocessing

Run python data_resize_cityscape.py to resize to smaller images.

Train Robust model against single task attack

  1. Set up the path to data in config/drn_d_22_cityscape_config.json

  2. Run cityscape_example.sh to train a main task with auxiliary task for robustness.

Taskonomy

Data Preprocessing

You can use our preprocessed data from preprocessed data

Or do from scratch

  1. Download data from official raw data.

  2. Run python data_resize_taskonomy.py to resize to smaller images.

  3. Rename segment_semantic to segmentsemantic.

Train Robust model against single task attack

  1. Set up the path to data in config/resnet18_taskonomy_config.json

  2. Run taskonomy_example.sh to train a main task with auxiliary task for robustness. For different task, we have different different setup, refer to our paper and supplementary for details.

Model evaluation

We offer our pretrained models to download here: Cityscapes segmentation depth and Taskonomy taskonomy segmentation demo

After setting up the path to your downloaded models in test_cityscapes_seg.py and test_taskonomy_seg.py,

Run python test_cityscapes_seg.py and python test_taskonomy_seg.py for evaluating the robustness of multitask models under single task attacks.

Pretrained models for other tasks for Taskonomy can be downloaded [here, comming soon](comming soon)

Acknowledgement

Our code refer the code at: https://github.com/fyu/drn/blob/master/drn.py Taskonomy https://github.com/tstandley/taskgrouping,

We thank the authors for open sourcing their code.

Owner
Columbia University
Columbia University
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022