SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

Overview

SPRING

PWC

PWC

PWC

PWC

This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021.

With SPRING you can perform both state-of-the-art Text-to-AMR parsing and AMR-to-Text generation without many cumbersome external components. If you use the code, please reference this work in your paper:

@inproceedings{bevilacqua-etal-2021-one,
    title = {One {SPRING} to Rule Them Both: {S}ymmetric {AMR} Semantic Parsing and Generation without a Complex Pipeline},
    author = {Bevilacqua, Michele and Blloshmi, Rexhina and Navigli, Roberto},
    booktitle = {Proceedings of AAAI},
    year = {2021}
}

Pretrained Checkpoints

Here we release our best SPRING models which are based on the DFS linearization.

Text-to-AMR Parsing

AMR-to-Text Generation

If you need the checkpoints of other experiments in the paper, please send us an email.

Installation

cd spring
pip install -r requirements.txt
pip install -e .

The code only works with transformers < 3.0 because of a disrupting change in positional embeddings. The code works fine with torch 1.5. We recommend the usage of a new conda env.

Train

Modify config.yaml in configs. Instructions in comments within the file. Also see the appendix.

Text-to-AMR

python bin/train.py --config configs/config.yaml --direction amr

Results in runs/

AMR-to-Text

python bin/train.py --config configs/config.yaml --direction text

Results in runs/

Evaluate

Text-to-AMR

python bin/predict_amrs.py \
    --datasets <AMR-ROOT>/data/amrs/split/test/*.txt \
    --gold-path data/tmp/amr2.0/gold.amr.txt \
    --pred-path data/tmp/amr2.0/pred.amr.txt \
    --checkpoint runs/<checkpoint>.pt \
    --beam-size 5 \
    --batch-size 500 \
    --device cuda \
    --penman-linearization --use-pointer-tokens

gold.amr.txt and pred.amr.txt will contain, respectively, the concatenated gold and the predictions.

To reproduce our paper's results, you will also need need to run the BLINK entity linking system on the prediction file (data/tmp/amr2.0/pred.amr.txt in the previous code snippet). To do so, you will need to install BLINK, and download their models:

git clone https://github.com/facebookresearch/BLINK.git
cd BLINK
pip install -r requirements.txt
sh download_blink_models.sh
cd models
wget http://dl.fbaipublicfiles.com/BLINK//faiss_flat_index.pkl
cd ../..

Then, you will be able to launch the blinkify.py script:

python bin/blinkify.py \
    --datasets data/tmp/amr2.0/pred.amr.txt \
    --out data/tmp/amr2.0/pred.amr.blinkified.txt \
    --device cuda \
    --blink-models-dir BLINK/models

To have comparable Smatch scores you will also need to use the scripts available at https://github.com/mdtux89/amr-evaluation, which provide results that are around ~0.3 Smatch points lower than those returned by bin/predict_amrs.py.

AMR-to-Text

python bin/predict_sentences.py \
    --datasets <AMR-ROOT>/data/amrs/split/test/*.txt \
    --gold-path data/tmp/amr2.0/gold.text.txt \
    --pred-path data/tmp/amr2.0/pred.text.txt \
    --checkpoint runs/<checkpoint>.pt \
    --beam-size 5 \
    --batch-size 500 \
    --device cuda \
    --penman-linearization --use-pointer-tokens

gold.text.txt and pred.text.txt will contain, respectively, the concatenated gold and the predictions. For BLEU, chrF++, and Meteor in order to be comparable you will need to tokenize both gold and predictions using JAMR tokenizer. To compute BLEU and chrF++, please use bin/eval_bleu.py. For METEOR, use https://www.cs.cmu.edu/~alavie/METEOR/ . For BLEURT don't use tokenization and run the eval with https://github.com/google-research/bleurt. Also see the appendix.

Linearizations

The previously shown commands assume the use of the DFS-based linearization. To use BFS or PENMAN decomment the relevant lines in configs/config.yaml (for training). As for the evaluation scripts, substitute the --penman-linearization --use-pointer-tokens line with --use-pointer-tokens for BFS or with --penman-linearization for PENMAN.

License

This project is released under the CC-BY-NC-SA 4.0 license (see LICENSE). If you use SPRING, please put a link to this repo.

Acknowledgements

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 and the ELEXIS project No. 731015 under the European Union’s Horizon 2020 research and innovation programme.

This work was supported in part by the MIUR under the grant "Dipartimenti di eccellenza 2018-2022" of the Department of Computer Science of the Sapienza University of Rome.

Owner
Sapienza NLP group
The NLP group at the Sapienza University of Rome
Sapienza NLP group
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022