An off-line judger supporting distributed problem repositories

Related tags

Deep LearningThaw
Overview

Thaw

中文 | English

Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHub or other open sourse repositories, get problems locally and judge programs automatically.

We request people who write problems add licenses to their problems or clear copyright notice so that problems can be shared easier, and data generator and solution as well, which can support generalization test and help improve the problems.

By making it off-line, distributed and based on GitHub, situations in which a few administrators examine a large number of problems can be prevented. The nice atmosphere on GitHub can also make quanlity of discussion higher.

We also hope to improve traditional methods of judging. Making it off-line helps avoid creating motivation of cheating, and we hope people do not exceedingly pursue the optimization of the program, but concentrate on things like the readability of code. We will support judging with less strict limit of time and memory, and estimating the polynomial time complexity of a program.

We will make it simple to configure and highly hackable too.

Installation

Package will be created and be released on pip and GitHub after enough improvement and tests on 0.0.1.

Manual

See ./docs/manual.md.

Also See sampleproblem about how to write a problem with Thaw for example.

Usage

Sorry for the project being incompleted. But it will be completed as quick as possible.

Below are expected result.

Create a problem:

thaw init .
git init sampleproblem
cd sampleproblem
thaw init hello_world
cd hello_world
vim -p hello_world.zh-CN.md hello_world.en-US.md std.cpp std.py checker.py

Solve a problem:

vim hello_world.cpp
thaw submit hello_world.cpp

Release a problem:

git add .
git commit -m "add hello_world"
git remote add origin https://github.com/username/sampleproblem
git push origin master

Download a problem:

git clone https://github.com/username/sampleproblem

How to contribute

Welcome to join us! You can improve Thaw by send an Issue or a Pull Request.

Or create a GitHub repository to release your problem according to the format, and create open and shared atmosphere of algorithm contest with us. You can add the url of your repository to repositories.dat to make it easy for others to get your problems and spread your problems.

We will create a Gitter group when more people join.

Contributors

Thank peers who improve Thaw together and share problems

License

AGPL

Owner
countercurrent_time
countercurrent_time
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
5 Jan 05, 2023
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
Roger Labbe 13k Dec 29, 2022