DROPO: Sim-to-Real Transfer with Offline Domain Randomization

Overview

DROPO: Sim-to-Real Transfer with Offline Domain Randomization

Gabriele Tiboni, Karol Arndt, Ville Kyrki.

This repository contains the code for the paper: "DROPO: Sim-to-Real Transfer with Offline Domain Randomization" submitted to the IEEE Robotics and Automation Letters (RAL) Journal, in December 2021.

Abstract: In recent years, domain randomization has gained a lot of traction as a method for sim-to-real transfer of reinforcement learning policies; however, coming up with optimal randomization ranges can be difficult. In this paper, we introduce DROPO, a novel method for estimating domain randomization ranges for a safe sim-to-real transfer. Unlike prior work, DROPO only requires a precollected offline dataset of trajectories, and does not converge to point estimates. We demonstrate that DROPO is capable of recovering dynamic parameter distributions in simulation and finding a distribution capable of compensating for an unmodelled phenomenon. We also evaluate the method on two zero-shot sim-to-real transfer scenarios, showing a successful domain transfer and improved performance over prior methods.

dropo_general_framework

Requirements

This repository makes use of the following external libraries:

How to launch DROPO

1. Dataset collection and formatting

Prior to running the code, an offline dataset of trajectories from the target (real) environment needs to be collected. This dataset can be generated either by rolling out any previously trained policy, or by kinesthetic guidance of the robot.

The dataset object must be formatted as follows:

n : int
      state space dimensionality
a : int
      action space dimensionality
t : int
      number of state transitions

dataset : dict,
      object containing offline-collected trajectories

dataset['observations'] : ndarray
      2D array (t, n) containing the current state information for each timestep

dataset['next_observations'] : ndarray
      2D array (t, n) containing the next-state information for each timestep

dataset['actions'] : ndarray
      2D array (t, a) containing the action commanded to the agent at the current timestep

dataset['terminals'] : ndarray
      1D array (t,) of booleans indicating whether or not the current state transition is terminal (ends the episode)

2. Add environment-specific methods

Augment the simulated environment with the following methods to allow Domain Randomization and its optimization:

  • env.set_task(*new_task) # Set new dynamics parameters

  • env.get_task() # Get current dynamics parameters

  • mjstate = env.get_sim_state() # Get current internal mujoco state

  • env.get_initial_mjstate(state) and env.get_full_mjstate # Get the internal mujoco state from given state

  • env.set_sim_state(mjstate) # Set the simulator to a specific mujoco state

  • env.set_task_search_bounds() # Set the search bound for the mean of the dynamics parameters

  • (optional) env.get_task_lower_bound(i) # Get lower bound for i-th dynamics parameter

  • (optional) env.get_task_upper_bound(i) # Get upper bound for i-th dynamics parameter

3. Run test_dropo.py

Sample file to launch DROPO.

Test DROPO on the Hopper environment

This repository contains a ready-to-use Hopper environment implementation (based on the code from OpenAI gym) and an associated offline dataset to run quick DROPO experiments on Hopper, with randomized link masses. The dataset consists of 20 trajectories collected on the ground truth hopper environment with mass values [3.53429174, 3.92699082, 2.71433605, 5.0893801].

E.g.:

  • Quick test (10 sparse transitions and 1000 obj. function evaluations only):

    python3 test_dropo.py --sparse-mode -n 10 -l 1 --budget 1000 -av --epsilon 1e-5 --seed 100 --dataset datasets/hopper10000 --normalize --logstdevs

  • Advanced test (2 trajectories are considered, with 5000 obj. function evaluations, and 10 parallel workers):

    python3 test_dropo.py -n 2 -l 1 --budget 5000 -av --epsilon 1e-5 --seed 100 --dataset datasets/hopper10000 --normalize --logstdevs --now 10

test_dropo.py will return the optimized domain randomization distribution, suitable for training a reinforcement learning policy on the same simulated environment.

Cite us

If you use this repository, please consider citing

    @misc{tiboni2022dropo,
          title={DROPO: Sim-to-Real Transfer with Offline Domain Randomization},
          author={Gabriele Tiboni and Karol Arndt and Ville Kyrki},
          year={2022},
          eprint={2201.08434},
          archivePrefix={arXiv},
          primaryClass={cs.RO}
    }
Owner
Gabriele Tiboni
First-year Ellis PhD student in Artificial Intelligence @ Politecnico di Torino.
Gabriele Tiboni
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023