DROPO: Sim-to-Real Transfer with Offline Domain Randomization

Overview

DROPO: Sim-to-Real Transfer with Offline Domain Randomization

Gabriele Tiboni, Karol Arndt, Ville Kyrki.

This repository contains the code for the paper: "DROPO: Sim-to-Real Transfer with Offline Domain Randomization" submitted to the IEEE Robotics and Automation Letters (RAL) Journal, in December 2021.

Abstract: In recent years, domain randomization has gained a lot of traction as a method for sim-to-real transfer of reinforcement learning policies; however, coming up with optimal randomization ranges can be difficult. In this paper, we introduce DROPO, a novel method for estimating domain randomization ranges for a safe sim-to-real transfer. Unlike prior work, DROPO only requires a precollected offline dataset of trajectories, and does not converge to point estimates. We demonstrate that DROPO is capable of recovering dynamic parameter distributions in simulation and finding a distribution capable of compensating for an unmodelled phenomenon. We also evaluate the method on two zero-shot sim-to-real transfer scenarios, showing a successful domain transfer and improved performance over prior methods.

dropo_general_framework

Requirements

This repository makes use of the following external libraries:

How to launch DROPO

1. Dataset collection and formatting

Prior to running the code, an offline dataset of trajectories from the target (real) environment needs to be collected. This dataset can be generated either by rolling out any previously trained policy, or by kinesthetic guidance of the robot.

The dataset object must be formatted as follows:

n : int
      state space dimensionality
a : int
      action space dimensionality
t : int
      number of state transitions

dataset : dict,
      object containing offline-collected trajectories

dataset['observations'] : ndarray
      2D array (t, n) containing the current state information for each timestep

dataset['next_observations'] : ndarray
      2D array (t, n) containing the next-state information for each timestep

dataset['actions'] : ndarray
      2D array (t, a) containing the action commanded to the agent at the current timestep

dataset['terminals'] : ndarray
      1D array (t,) of booleans indicating whether or not the current state transition is terminal (ends the episode)

2. Add environment-specific methods

Augment the simulated environment with the following methods to allow Domain Randomization and its optimization:

  • env.set_task(*new_task) # Set new dynamics parameters

  • env.get_task() # Get current dynamics parameters

  • mjstate = env.get_sim_state() # Get current internal mujoco state

  • env.get_initial_mjstate(state) and env.get_full_mjstate # Get the internal mujoco state from given state

  • env.set_sim_state(mjstate) # Set the simulator to a specific mujoco state

  • env.set_task_search_bounds() # Set the search bound for the mean of the dynamics parameters

  • (optional) env.get_task_lower_bound(i) # Get lower bound for i-th dynamics parameter

  • (optional) env.get_task_upper_bound(i) # Get upper bound for i-th dynamics parameter

3. Run test_dropo.py

Sample file to launch DROPO.

Test DROPO on the Hopper environment

This repository contains a ready-to-use Hopper environment implementation (based on the code from OpenAI gym) and an associated offline dataset to run quick DROPO experiments on Hopper, with randomized link masses. The dataset consists of 20 trajectories collected on the ground truth hopper environment with mass values [3.53429174, 3.92699082, 2.71433605, 5.0893801].

E.g.:

  • Quick test (10 sparse transitions and 1000 obj. function evaluations only):

    python3 test_dropo.py --sparse-mode -n 10 -l 1 --budget 1000 -av --epsilon 1e-5 --seed 100 --dataset datasets/hopper10000 --normalize --logstdevs

  • Advanced test (2 trajectories are considered, with 5000 obj. function evaluations, and 10 parallel workers):

    python3 test_dropo.py -n 2 -l 1 --budget 5000 -av --epsilon 1e-5 --seed 100 --dataset datasets/hopper10000 --normalize --logstdevs --now 10

test_dropo.py will return the optimized domain randomization distribution, suitable for training a reinforcement learning policy on the same simulated environment.

Cite us

If you use this repository, please consider citing

    @misc{tiboni2022dropo,
          title={DROPO: Sim-to-Real Transfer with Offline Domain Randomization},
          author={Gabriele Tiboni and Karol Arndt and Ville Kyrki},
          year={2022},
          eprint={2201.08434},
          archivePrefix={arXiv},
          primaryClass={cs.RO}
    }
Owner
Gabriele Tiboni
First-year Ellis PhD student in Artificial Intelligence @ Politecnico di Torino.
Gabriele Tiboni
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023