Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Overview

Cross Domain Facial Expression Recognition Benchmark

Implementation of papers:

Pipeline

Environment

Ubuntu 16.04 LTS, Python 3.5, PyTorch 1.3

Note: We also provide docker image for this project, click here. (Tag: py3-pytorch1.3-agra)

Datasets

To apply for the AFE, please complete the AFE Database User Agreement and submit it to [email protected] or [email protected].

Note:

  1. The AFE Database Agreement needs to be signed by the faculty member at a university or college and sent it by email.
  2. In order to comply with relevant regulations, you need to apply for the image data of the following data sets by yourself, including CK+, JAFFE, SFEW 2.0, FER2013, ExpW, RAF.

Pre-Train Model

You can download pre-train models in Baidu Drive (password: tzrf) and OneDrive.

Note: To replace backbone of each methods, you should modify and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py) in the folder where you want to use the method.

Usage

Before run these script files, you should download datasets and pre-train model, and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py).

Run ICID

cd ICID
bash Train.sh

Run DFA

cd DFA
bash Train.sh

Run LPL

cd LPL
bash Train.sh

Run DETN

cd DETN
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run FTDNN

cd FTDNN
bash Train.sh

Run ECAN

cd ECAN
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run CADA

cd CADA
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run SAFN

cd SAFN
bash TrainWithSAFN.sh

Run SWD

cd SWD
bash Train.sh

Run AGRA

cd AGRA
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Result

Souce Domain: RAF

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-50 74.42 50.70 48.85 53.70 69.54 59.44
DFA ResNet-50 64.26 44.44 43.07 45.79 56.86 50.88
LPL ResNet-50 74.42 53.05 48.85 55.89 66.90 59.82
DETN ResNet-50 78.22 55.89 49.40 52.29 47.58 56.68
FTDNN ResNet-50 79.07 52.11 47.48 55.98 67.72 60.47
ECAN ResNet-50 79.77 57.28 52.29 56.46 47.37 58.63
CADA ResNet-50 72.09 52.11 53.44 57.61 63.15 59.68
SAFN ResNet-50 75.97 61.03 52.98 55.64 64.91 62.11
SWD ResNet-50 75.19 54.93 52.06 55.84 68.35 61.27
Ours ResNet-50 85.27 61.50 56.43 58.95 68.50 66.13

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-18 67.44 48.83 47.02 53.00 68.52 56.96
DFA ResNet-18 54.26 42.25 38.30 47.88 47.42 46.02
LPL ResNet-18 72.87 53.99 49.31 53.61 68.35 59.63
DETN ResNet-18 64.19 52.11 42.25 42.01 43.92 48.90
FTDNN ResNet-18 76.74 50.23 49.54 53.28 68.08 59.57
ECAN ResNet-18 66.51 52.11 48.21 50.76 48.73 53.26
CADA ResNet-18 73.64 55.40 52.29 54.71 63.74 59.96
SAFN ResNet-18 68.99 49.30 50.46 53.31 68.32 58.08
SWD ResNet-18 72.09 53.52 49.31 53.70 65.85 58.89
Ours ResNet-18 77.52 61.03 52.75 54.94 69.70 63.19

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID MobileNet V2 57.36 37.56 38.30 44.47 60.64 47.67
DFA MobileNet V2 41.86 35.21 29.36 42.36 43.66 38.49
LPL MobileNet V2 59.69 40.38 40.14 50.13 62.26 50.52
DETN MobileNet V2 53.49 40.38 35.09 45.88 45.26 44.02
FTDNN MobileNet V2 71.32 46.01 45.41 49.96 62.87 55.11
ECAN MobileNet V2 53.49 43.08 35.09 45.77 45.09 44.50
CADA MobileNet V2 62.79 53.05 43.12 49.34 59.40 53.54
SAFN MobileNet V2 66.67 45.07 40.14 49.90 61.40 52.64
SWD MobileNet V2 68.22 55.40 43.58 50.30 60.04 55.51
Ours MobileNet V2 72.87 55.40 45.64 51.05 63.94 57.78

Souce Domain: AFE

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-50 56.59 57.28 44.27 46.92 52.91 51.59
DFA ResNet-50 51.86 52.70 38.03 41.93 60.12 48.93
LPL ResNet-50 73.64 61.03 49.77 49.54 55.26 57.85
DETN ResNet-50 56.27 52.11 44.72 42.17 59.80 51.01
FTDNN ResNet-50 61.24 57.75 47.25 46.36 52.89 53.10
ECAN ResNet-50 58.14 56.91 46.33 46.30 61.44 53.82
CADA ResNet-50 72.09 49.77 50.92 50.32 61.70 56.96
SAFN ResNet-50 73.64 64.79 49.08 48.89 55.69 58.42
SWD ResNet-50 72.09 61.50 48.85 48.83 56.22 57.50
Ours ResNet-50 78.57 65.43 51.18 51.31 62.71 61.84

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-18 54.26 51.17 47.48 46.44 54.85 50.84
DFA ResNet-18 35.66 45.82 34.63 36.88 62.53 43.10
LPL ResNet-18 67.44 62.91 48.39 49.82 54.51 56.61
DETN ResNet-18 44.19 47.23 45.46 45.39 58.41 48.14
FTDNN ResNet-18 58.91 59.15 47.02 48.58 55.29 53.79
ECAN ResNet-18 44.19 60.56 43.26 46.15 62.52 51.34
CADA ResNet-18 72.09 53.99 48.39 48.61 58.50 56.32
SAFN ResNet-18 68.22 61.50 50.46 50.07 55.17 57.08
SWD ResNet-18 77.52 59.15 50.69 51.84 56.56 59.15
Ours ResNet-18 79.84 61.03 51.15 51.95 65.03 61.80

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID MobileNet V2 55.04 42.72 34.86 39.94 44.34 43.38
DFA MobileNet V2 44.19 27.70 31.88 35.95 61.55 40.25
LPL MobileNet V2 69.77 50.23 43.35 45.57 51.63 52.11
DETN MobileNet V2 57.36 54.46 32.80 44.11 64.36 50.62
FTDNN MobileNet V2 65.12 46.01 46.10 46.69 53.02 51.39
ECAN MobileNet V2 71.32 56.40 37.61 45.34 64.00 54.93
CADA MobileNet V2 70.54 45.07 40.14 46.72 54.93 51.48
SAFN MobileNet V2 62.79 53.99 42.66 46.61 52.65 51.74
SWD MobileNet V2 64.34 53.52 44.72 50.24 55.85 53.73
Ours MobileNet V2 75.19 54.46 47.25 47.88 61.10 57.18

Mean of All Methods

Souce Domain: RAF

Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ResNet-50 75.87 54.30 54.49 54.82 62.09 59.51
ResNet-18 69.43 51.88 47.94 51.72 61.26 56.45
MobileNet V2 60.78 45.15 39.59 47.92 56.46 49.98

Souce Domain: AFE

Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ResNet-50 65.41 57.93 47.04 47.26 57.87 55.10
ResNet-18 60.23 56.25 46.95 47.57 58.34 53.87
MobileNet V2 63.57 48.46 40.14 44.91 56.34 50.68

Citation

@article{chen2020cross,
  title={Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchmark and Adversarial Graph Learning},
  author={Chen, Tianshui and Pu, Tao and Wu, Hefeng and Xie, Yuan and Liu, Lingbo and Lin, Liang},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  pages={1-1},
  doi={10.1109/TPAMI.2021.3131222}
}

@inproceedings{xie2020adversarial,
  title={Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition},
  author={Xie, Yuan and Chen, Tianshui and Pu, Tao and Wu, Hefeng and Lin, Liang},
  booktitle={Proceedings of the 28th ACM international conference on Multimedia},
  year={2020}
}

Contributors

For any questions, feel free to open an issue or contact us:

code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022