Estimating Example Difficulty using Variance of Gradients

Overview

Estimating Example Difficulty using Variance of Gradients

This repository contains source code necessary to reproduce some of the main results in the paper:

If you use this software, please consider citing:

@article{agarwal2020estimating, 
title={Estimating Example Difficulty using Variance of Gradients},
author={Agarwal, Chirag and Hooker, Sara},
journal={arXiv preprint arXiv:2008.11600},
year={2020}
}

1. Setup

Installing software

This repository is built using a combination of TensorFlow and PyTorch. You can install the necessary libraries by pip installing the requirements text file pip install -r ./requirements_tf.txt and pip install -r ./requirements_pytorch.txt

2. Usage

Toy experiment

toy_script.py is the script for running toy dataset experiment. You can analyze the training/testing data at diffferent stages of the training, viz. Early, Middle, and Late, using the flags split and mode. The vog_cal flag enables visualizing different versions of VOG scores such as the raw score, class normalized, or the absolute class normalized scores.

Examples

Running python3 toy_script.py --split test --mode early --vog_cal normalize generates the toy dataset decision boundary figure along with the relation between the perpendicular distance of individual points from the decision boundary and the VOG scores. The respective figures are:

Left: The visualization of the toy dataset decision boundary with the testing data points. The Multiple Layer Perceptron model achieves 100% training accuracy. Right: The scatter plot between the Variance of Gradients (VoGs) for each testing data point and their perpendicular distance shows that higher scores pertain to the most challenging examples (closest to the decision boundary)

ImageNet

The main scripts for the ImageNet experiments are in the ./imagenet/ folder.

  1. Before calculating the VOG scores you would need to store the gradients of the respective images in the ./scripts/train.txt/ file using model snapshots. For demonstration purpose, we have shared the model weights of the late stage, i.e. steps 30024, 31275, and 32000. Now, for example, we want to store the gradients for the imagenet dataset (stored as /imagenet_dir/train) at snapshot 32000, we run the shell script train_get_gradients.sh like:

source train_get_gradients.sh 32000 ./imagenet/train_results/ 9 ./scripts/train.txt/

  1. For this repo, we have generated the gradients for 100 random images for the late stage training process and stored the results in ./imagenet/train_results/. To generate the error rate performance at different VOG deciles run train_visualize_grad.py using the following command. python train_visualize_grad.py

On analyzing the VOG score for a particular class (e.g. below are magpie and pop bottle) in the late training stage, we found two unique groups of images. In this work, we hypothesize that examples that a model has difficulty learning (images on the right) will exhibit higher variance in gradient updates over the course of training (. On the other hand, the gradient updates for the relatively easier examples are expected to stabilize early in training and converge to a narrow range of values.

Each 5×5 grid shows the top-25 ImageNet training-set images with the lowest (left column) and highest (right column) VOG scores for the class magpie and pop bottle with their predicted labels below the image. Training set images with higher VOG scores (b) tend to feature zoomed-in images with atypical color schemes and vantage points.

4. Licenses

Note that the code in this repository is licensed under MIT License, but, the pre-trained condition models used by the code have their own licenses. Please carefully check them before use.

5. Questions?

If you have questions/suggestions, please feel free to email or create github issues.

Owner
Chirag Agarwal
Researching the Unknown
Chirag Agarwal
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Fast Scattering Transform with CuPy/PyTorch

Announcement 11/18 This package is no longer supported. We have now released kymatio: http://www.kymat.io/ , https://github.com/kymatio/kymatio which

Edouard Oyallon 289 Dec 07, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022