PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

Overview

DiscoGAN in PyTorch

PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.

* All samples in README.md are genearted by neural network except the first image for each row.
* Network structure is slightly diffferent (here) from the author's code.

Requirements

Usage

First download datasets (from pix2pix) with:

$ bash ./data/download_dataset.sh dataset_name

or you can use your own dataset by placing images like:

data
├── YOUR_DATASET_NAME
│   ├── A
│   |   ├── xxx.jpg (name doesn't matter)
│   |   ├── yyy.jpg
│   |   └── ...
│   └── B
│       ├── zzz.jpg
│       ├── www.jpg
│       └── ...
└── download_dataset.sh

All images in each dataset should have same size like using imagemagick:

# for Ubuntu
$ sudo apt-get install imagemagick
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/A/*.jpg
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/B/*.jpg

# for Mac
$ brew install imagemagick
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/A/*.jpg
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/B/*.jpg

# for scale and center crop
$ mogrify -resize 256x256^ -gravity center -crop 256x256+0+0 -quality 100 -path ../A/*.jpg

To train a model:

$ python main.py --dataset=edges2shoes --num_gpu=1
$ python main.py --dataset=YOUR_DATASET_NAME --num_gpu=4

To test a model (use your load_path):

$ python main.py --dataset=edges2handbags --load_path=logs/edges2handbags_2017-03-18_10-55-37 --num_gpu=0 --is_train=False

Results

1. Toy dataset

Result of samples from 2-dimensional Gaussian mixture models. IPython notebook

# iteration: 0:

# iteration: 10000:

2. Shoes2handbags dataset

# iteration: 11200:

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (shoe -> handbag -> shoe)

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (handbag -> shoe -> handbag)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) -> G_AB(G_BA(G_AB(x_A))) -> G_BA(G_AB(G_BA(G_AB(x_A)))) -> ...

3. Edges2shoes dataset

# iteration: 9600:

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (color -> sketch -> color)

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (sketch -> color -> sketch)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) -> G_AB(G_BA(G_AB(x_A))) -> G_BA(G_AB(G_BA(G_AB(x_A)))) -> ...

4. Edges2handbags dataset

# iteration: 9500:

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (color -> sketch -> color)

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (sketch -> color -> sketch)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) -> G_AB(G_BA(G_AB(x_A))) -> G_BA(G_AB(G_BA(G_AB(x_A)))) -> ...

5. Cityscapes dataset

# iteration: 8350:

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (image -> segmentation -> image)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (segmentation -> image -> segmentation)

6. Map dataset

# iteration: 22200:

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (image -> segmentation -> image)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (segmentation -> image -> segmentation)

7. Facades dataset

Generation and reconstruction on dense segmentation dataset looks weird which are not included in the paper.
I guess a naive choice of mean square error loss for reconstruction need some change on this dataset.

# iteration: 19450:

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (image -> segmentation -> image)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (segmentation -> image -> segmentation)

Related works

Author

Taehoon Kim / @carpedm20

Owner
Taehoon Kim
ex OpenAI
Taehoon Kim
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Paper Links: TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentati

Hust Visual Learning Team 253 Dec 21, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022