Implicit Deep Adaptive Design (iDAD)

Related tags

Deep Learningidad
Overview

Implicit Deep Adaptive Design (iDAD)

This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods'.

@article{ivanova2021implicit,
  title={Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods},
  author={Ivanova, Desi R. and Foster, Adam and Kleinegesse, Steven and Gutmann, Michael and Rainforth, Tom},
  journal={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Computing infrastructure requirements

We have tested this codebase on Linux (Ubuntu x86_64) and MacOS (Big Sur v11.2.3) with Python 3.8. To train iDAD networks, we recommend the use of a GPU. We used one GeForce RTX 3090 GPU on a machine with 126 GiB of CPU memory and 40 CPU cores.

Installation

  1. Ensure that Python and conda are installed.
  2. Create and activate a new conda virtual environment as follows
conda create -n idad_code
conda activate idad_code
  1. Install the correct version of PyTorch, following the instructions at pytorch.org. For our experiments we used torch==1.8.0 with CUDA version 11.1.
  2. Install the remaining package requirements using pip install -r requirements.txt.
  3. Install the torchsde package from its repository: pip install git+https://github.com/google-research/torchsde.git.

MLFlow

We use mlflow to log metric and store network parameters. Each experiment run is stored in a directory mlruns which will be created automatically. Each experiment is assigned a numerical and each run gets a unique . The iDAD networks will be saved in ./mlruns/ / /artifacts , which will be printed at the end of each training run.

Location Finding Experiment

To train an iDAD network with the InfoNCE bound to locate 2 sources in 2D, using the approach in the paper, execute the command

python3 location_finding.py \
    --num-steps 100000 \
    --num-experiments=10 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 64 \
    --hidden-dim 512 \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To train an iDAD network with the NWJ bound, using the approach in the paper, execute the command

python3 location_finding.py \
    --num-steps 100000 \
    --num-experiments=10 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 64 \
    --hidden-dim 512 \
    --mi-estimator NWJ \
    --device <DEVICE>

To run the static MINEBED baseline, use the following

python3 location_finding.py \
    --num-steps 100000 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0001 \
    --num-experiments 10 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator NWJ \
    --device <DEVICE>

To run the static SG-BOED baseline, use the following

python3 location_finding.py \
    --num-steps 100000 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To run the adaptive (explicit likelihood) DAD baseline, use the following

python3 location_finding.py \
    --num-steps 100000 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator sPCE \
    --design-arch sum \
    --device <DEVICE>

To evaluate the resulting networks eun the following command

python3 eval_sPCE.py --experiment-id <ID>

To evaluate a random design baseline (requires no pre-training):

python3 baselines_locfin_nontrainable.py \
    --policy random \
    --physical-dim 2 \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

To run the variational baseline (note: it takes a very long time), run:

python3 baselines_locfin_variational.py \
    --num-histories 128 \
    --num-experiments 10 \
    --physical-dim 2 \
    --lr 0.001 \
    --num-steps 5000\
    --device <DEVICE>

Copy path_to_artifact and pass it to the evaluation script:

python3 eval_sPCE_from_source.py \
    --path-to-artifact <path_to_artifact> \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

Pharmacokinetic Experiment

To train an iDAD network with the InfoNCE bound, using the approach in the paper, execute the command

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0001 \
    --num-experiments 5 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To train an iDAD network with the NWJ bound, using the approach in the paper, execute the command

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0001 \
    --num-experiments 5 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator NWJ \
    --gamma 0.5 \
    --device <DEVICE>

To run the static MINEBED baseline, use the following

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.001 \
    --num-experiments 5 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator NWJ \
    --device <DEVICE>

To run the static SG-BOED baseline, use the following

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0005 \
    --num-experiments 5 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To run the adaptive (explicit likelihood) DAD baseline, use the following

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0001 \
    --num-experiments 5 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator sPCE \
    --design-arch sum \
    --device <DEVICE>

To evaluate the resulting networks run the following command

python3 eval_sPCE.py --experiment-id <ID>

To evaluate a random design baseline (requires no pre-training):

python3 baselines_pharmaco_nontrainable.py \
    --policy random \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

To evaluate an equal interval baseline (requires no pre-training):

python3 baselines_pharmaco_nontrainable.py \
    --policy equal_interval \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

To run the variational baseline (note: it takes a very long time), run:

python3 baselines_pharmaco_variational.py \
    --num-histories 128 \
    --num-experiments 10 \
    --lr 0.001 \
    --num-steps 5000 \
    --device <DEVICE>

Copy path_to_artifact and pass it to the evaluation script:

python3 eval_sPCE_from_source.py \
    --path-to-artifact <path_to_artifact> \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

SIR experiment

For the SIR experiments, please first generate an initial training set and a test set:

python3 epidemic_simulate_data.py \
    --num-samples=100000 \
    --device <DEVICE>

To train an iDAD network with the InfoNCE bound, using the approach in the paper, execute the command

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.0005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --mi-estimator InfoNCE \
    --design-transform ts \
    --device <DEVICE>

To train an iDAD network with the NWJ bound, execute the command

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.0005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --mi-estimator NWJ \
    --design-transform ts \
    --device <DEVICE>

To run the static SG-BOED baseline, run

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch static \
    --critic-arch cat \
    --design-transform iid \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To run the static MINEBED baseline, run

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.001 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch static \
    --critic-arch cat \
    --design-transform iid \
    --mi-estimator NWJ \
    --device <DEVICE>

To train a critic with random designs (to evaluate the random design baseline):

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch random \
    --critic-arch cat \
    --design-transform iid \
    --device <DEVICE>

To train a critic with equal interval designs, which is then used to evaluate the equal interval baseline, run the following

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.001 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch equal_interval \
    --critic-arch cat \
    --design-transform iid \
    --device <DEVICE>

Finally, to evaluate the different methods, run

python3 eval_epidemic.py \
    --experiment-id <ID> \
    --device <DEVICE>
Owner
Desi
Desi
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022