Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

Related tags

Deep LearningMSAD
Overview

MSAD

Multi-Scale Aligned Distillation for Low-Resolution Detection

Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya Jia


This project provides an implementation for the CVPR 2021 paper "Multi-Scale Aligned Distillation for Low-Resolution Detection" based on Detectron2. MSAD targets to detect objects using low-resolution instead of high-resolution image. MSAD could obtain comparable performance in high-resolution image size. Our paper use Slimmable Neural Networks as our pretrained weight.

Installation

This project is based on Detectron2, which can be constructed as follows.

  • Install Detectron2 following the instructions.
  • Setup the dataset following the structure.
  • Copy this project to /path/to/detectron2/projects/MSAD
  • Download the slimmable networks in the github. The slimmable resnet50 pretrained weight link is here.

Pretrained Weight

  • Move the pretrained weight to your target path
  • Modify the weight path in configs/Base-SLRESNET-FCOS.yaml

Teacher Training

To train teacher model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file <projects/MSAD/configs/config.yaml> --num-gpus 8

For example, to launch MSAD teacher training (1x schedule) with Slimmable-ResNet-50 backbone in 0.25 width on 8 GPUs and save the model in the path "/data/SLR025-50-T". one should execute:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file projects/MSAD/configs/SLR025-50-T.yaml --num-gpus 8 OUTPUT_DIR /data/SLR025-50-T 

Student Training

To train student model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file <projects/MSAD/configs/config.yaml> --num-gpus 8

For example, to launch MSAD student training (1x schedule) with Slimmable-ResNet-50 backbone in 0.25 width on 8 GPUs and save the model in the path "/data/SLR025-50-S". We assume the teacher weight is saved in the path "/data/SLR025-50-T/model_final.pth" one should execute:

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file projects/MSAD/configs/MSAD-R50-S025-1x.yaml --num-gpus 8 MODEL.WEIGHTS /data/SLR025-50-T/model_final.pth OUTPUT_DIR MSAD-R50-S025-1x

Evaluation

To evaluate a teacher or student pre-trained model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

or

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

Results

We provide the results on COCO val set with pretrained models. In the following table, we define the backbone FLOPs as capacity. For brevity, we regard the FLOPs of Slimmable Resnet50 in width 1.0 and high resolution input (800,1333) as 1x.

Method Backbone Capacity Sched Width Role Resolution BoxAP download
FCOS Slimmable-R50 1.25x 1x 1.00 Teacher H & L 42.8 model | metrics
FCOS Slimmable-R50 0.25x 1x 1.00 Student L 39.9 model | metrics
FCOS Slimmable-R50 0.70x 1x 0.75 Teacher H & L 41.2 model | metrics
FCOS Slimmable-R50 0.14x 1x 0.75 Student L 38.8 model | metrics
FCOS Slimmable-R50 0.31x 1x 0.50 Teacher H & L 38.4 model | metrics
FCOS Slimmable-R50 0.06x 1x 0.50 Student L 35.7 model | metrics
FCOS Slimmable-R50 0.08x 1x 0.25 Teacher H & L 33.2 model | metrics
FCOS Slimmable-R50 0.02x 1x 0.25 Student L 30.3 model | metrics

Citing MSAD

Consider cite MSAD in your publications if it helps your research.

@article{qi2021msad,
  title={Multi-Scale Aligned Distillation for Low-Resolution Detection},
  author={Lu Qi, Jason Kuen, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya Jia},
  journal={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}
Owner
Jia Research Lab
Research lab focusing on CV led by Prof. Jiaya Jia
Jia Research Lab
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022