Nodule Generation Algorithm Baseline and template code for node21 generation track

Overview

Nodule Generation Algorithm

This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for nodule generation track in NODE21. It contains all necessary files to build a docker image which can be submitted as an algorithm on the grand-challenge platform. Participants in the generation track can use this codebase as a template to understand how to create their own algorithm for submission.

To serve this algorithm in a docker container compatible with the requirements of grand-challenge, we used evalutils which provides methods to wrap your algorithm in Docker containers. It automatically generates template scripts for your container files, and creates commands for building, testing, and exporting the algorithm container. We adapted this template code for our algorithm by following the general tutorial on how to create a grand-challenge algorithm.

We also explain this template repository, and how to set up your docker container in this video. Before diving into the details of this template code we recommend readers have the pre-requisites installed and have cloned this repository as described below:

Prerequisites

The code in this repository is based on docker and evalutils.

Windows Tip: For participants using Windows, it is highly recommended to install Windows Subsystem for Linux (WSL) to work with Docker on a Linux environment within Windows. Please make sure to install WSL 2 by following the instructions on the same page. The alternative is to work purely out of Ubuntu, or any other flavor of Linux. Also, note that the basic version of WSL 2 does not come with GPU support. Please watch the official tutorial by Microsoft on installing WSL 2 with GPU support.

Please clone the repository as follows:

git clone git@github.com:node21challenge/node21_generation_baseline.git
Table of Contents

An overview of the baseline algorithm
Configuring the Docker File
Export your algorithm container
Submit your algorithm

An overview of the baseline algorithm

The baseline nodule generation algorithm is based on the paper published by Litjens et al.. The main file executed by the docker container is process.py.

Input and output interfaces

The algorithm needs to generate nodules on a given chest X-ray image (CXR) at requested locations (given in a .json file) and return a CXR after placing nodules. The nodule generation algorithm takes as input a chest X-ray (CXR) and a nodules.json file, which holds the coordinates location of where to generate the nodules. The algorithm reads the input :

  • CXR at "/input/ .mha"
  • nodules.json file at "/input/nodules.json".

and writes the output to: /output/ .mha

The nodules.json file contains the predicted bounding box locations and associated nodule likelihoods (probabilities). This file is a dictionary and contains multiple 2D bounding boxes coordinates in CIRRUS compatible format. The coordinates are expected in milimiters when spacing information is available. An example nodules.json file is as follows:

{
    "type": "Multiple 2D bounding boxes",
    "boxes": [
        {
        "corners": [
            [ 92.66666412353516, 136.06668090820312, 0],
            [ 54.79999923706055, 136.06668090820312, 0],
            [ 54.79999923706055, 95.53333282470703, 0],
            [ 92.66666412353516, 95.53333282470703, 0]
        ]},
        {
        "corners": [
            [ 92.66666412353516, 136.06668090820312, 0],
            [ 54.79999923706055, 136.06668090820312, 0],
            [ 54.79999923706055, 95.53333282470703, 0],
            [ 92.66666412353516, 95.53333282470703, 0]
        ]}
    ],
    "version": { "major": 1, "minor": 0 }
}

The implementation of the algorithm inference in process.py is straightforward (and must be followed by participants creating their own algorithm): load the nodules.json file in the init function of the class, and implement a function called predict to generate nodules on a given CXR image.

The function predict is run by evalutils when the process function is called.

πŸ’‘ To test this container locally without a docker container, you should the execute_in_docker flag to False - this sets all paths to relative paths. You should set it back to True when you want to switch back to the docker container setting.

Operating on a 3D image

For the sake of time efficiency in the evaluation process of NODE21, the submitted algorithms to NODE21 are expected to operate on a 3D image which consists of multiple CXR images stacked together. The algorithm should go through the slices (CXR images) one by one and process them individually, as shown in predict. When outputting results, the third coordinate of the bounding box in nodules.json file is used to identify the CXR from the stack. If the algorithm processes the first CXR image in 3D volume, the z coordinate output should be 0, if it processes the third CXR image, it should be 2, etc.

Configure the Docker file

Build, test and export your container

  1. Switch to the correct algorithm folder at algorithms/nodulegeneration. To test if all dependencies are met, you can run the file build.bat (Windows) / build.sh (Linux) to build the docker container. Please note that the next step (testing the container) also runs a build, so this step is not necessary if you are certain that everything is set up correctly.

    build.sh/build.bat files will run the following command to build the docker for you:

    docker build -t nodulegenerator .
  2. To test the docker container to see if it works as expected, test.sh/test.bat will run the container on images provided in test/ folder, and it will check the results (results.json produced by your algorithm) against test/expected_output.json. Please update your test/expected_output.json according to your algorithm result when it is run on the test data.

    . ./test.sh

    If the test runs successfully you will see the message Tests successfully passed... at the end of the output.

    Once you validated that the algorithm works as expected, you might want to simply run the algorithm on the test folder and check the output images for yourself. If you are on a native Linux system you will need to create a results folder that the docker container can write to as follows (WSL users can skip this step) (Note that $SCRIPTPATH was created in the previous test script).

    mkdir $SCRIPTPATH/results
    chmod 777 $SCRIPTPATH/results

    To write the output of the algorithm to the results folder use the following command (note that $SCRIPTPATH was created in the previous test script):

    docker run --rm --memory=11g -v $SCRIPTPATH/test:/input/ -v $SCRIPTPATH/results:/output/ nodulegenerator
  3. Run export.sh/export.bat to save the docker image which runs the following command:

     docker save nodulegenerator | gzip -c > nodulegenerator.tar.gz

Submit your algorithm

Details of how to create an algorithm on grand-challenge and submit it to the node21 challenge will be added here soon.
Please make sure all steps described above work as expected before proceeding. Ensure also that you have an account on grand-challenge.org and that you are a
verified user there.

You might also like...
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Official Code for ICML 2021 paper
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

A tiny, friendly, strong baseline code for Person-reID (based on pytorch).
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.
This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

RL algorithm  PPO and IRL algorithm AIRL written with Tensorflow.
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

Releases(v1.0addedtag)
Owner
node21challenge
Repositories associated with the grand challenge at https://node21.grand-challenge.org/
node21challenge
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet Β· Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit πŸš€ πŸš€ πŸš€ Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Deep Learning and Reinforcement Learning Library for Scientists and Engineers πŸ”₯

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian SchΓ€fer 0 Jun 19, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023