Nodule Generation Algorithm Baseline and template code for node21 generation track

Overview

Nodule Generation Algorithm

This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for nodule generation track in NODE21. It contains all necessary files to build a docker image which can be submitted as an algorithm on the grand-challenge platform. Participants in the generation track can use this codebase as a template to understand how to create their own algorithm for submission.

To serve this algorithm in a docker container compatible with the requirements of grand-challenge, we used evalutils which provides methods to wrap your algorithm in Docker containers. It automatically generates template scripts for your container files, and creates commands for building, testing, and exporting the algorithm container. We adapted this template code for our algorithm by following the general tutorial on how to create a grand-challenge algorithm.

We also explain this template repository, and how to set up your docker container in this video. Before diving into the details of this template code we recommend readers have the pre-requisites installed and have cloned this repository as described below:

Prerequisites

The code in this repository is based on docker and evalutils.

Windows Tip: For participants using Windows, it is highly recommended to install Windows Subsystem for Linux (WSL) to work with Docker on a Linux environment within Windows. Please make sure to install WSL 2 by following the instructions on the same page. The alternative is to work purely out of Ubuntu, or any other flavor of Linux. Also, note that the basic version of WSL 2 does not come with GPU support. Please watch the official tutorial by Microsoft on installing WSL 2 with GPU support.

Please clone the repository as follows:

git clone git@github.com:node21challenge/node21_generation_baseline.git
Table of Contents

An overview of the baseline algorithm
Configuring the Docker File
Export your algorithm container
Submit your algorithm

An overview of the baseline algorithm

The baseline nodule generation algorithm is based on the paper published by Litjens et al.. The main file executed by the docker container is process.py.

Input and output interfaces

The algorithm needs to generate nodules on a given chest X-ray image (CXR) at requested locations (given in a .json file) and return a CXR after placing nodules. The nodule generation algorithm takes as input a chest X-ray (CXR) and a nodules.json file, which holds the coordinates location of where to generate the nodules. The algorithm reads the input :

  • CXR at "/input/ .mha"
  • nodules.json file at "/input/nodules.json".

and writes the output to: /output/ .mha

The nodules.json file contains the predicted bounding box locations and associated nodule likelihoods (probabilities). This file is a dictionary and contains multiple 2D bounding boxes coordinates in CIRRUS compatible format. The coordinates are expected in milimiters when spacing information is available. An example nodules.json file is as follows:

{
    "type": "Multiple 2D bounding boxes",
    "boxes": [
        {
        "corners": [
            [ 92.66666412353516, 136.06668090820312, 0],
            [ 54.79999923706055, 136.06668090820312, 0],
            [ 54.79999923706055, 95.53333282470703, 0],
            [ 92.66666412353516, 95.53333282470703, 0]
        ]},
        {
        "corners": [
            [ 92.66666412353516, 136.06668090820312, 0],
            [ 54.79999923706055, 136.06668090820312, 0],
            [ 54.79999923706055, 95.53333282470703, 0],
            [ 92.66666412353516, 95.53333282470703, 0]
        ]}
    ],
    "version": { "major": 1, "minor": 0 }
}

The implementation of the algorithm inference in process.py is straightforward (and must be followed by participants creating their own algorithm): load the nodules.json file in the init function of the class, and implement a function called predict to generate nodules on a given CXR image.

The function predict is run by evalutils when the process function is called.

๐Ÿ’ก To test this container locally without a docker container, you should the execute_in_docker flag to False - this sets all paths to relative paths. You should set it back to True when you want to switch back to the docker container setting.

Operating on a 3D image

For the sake of time efficiency in the evaluation process of NODE21, the submitted algorithms to NODE21 are expected to operate on a 3D image which consists of multiple CXR images stacked together. The algorithm should go through the slices (CXR images) one by one and process them individually, as shown in predict. When outputting results, the third coordinate of the bounding box in nodules.json file is used to identify the CXR from the stack. If the algorithm processes the first CXR image in 3D volume, the z coordinate output should be 0, if it processes the third CXR image, it should be 2, etc.

Configure the Docker file

Build, test and export your container

  1. Switch to the correct algorithm folder at algorithms/nodulegeneration. To test if all dependencies are met, you can run the file build.bat (Windows) / build.sh (Linux) to build the docker container. Please note that the next step (testing the container) also runs a build, so this step is not necessary if you are certain that everything is set up correctly.

    build.sh/build.bat files will run the following command to build the docker for you:

    docker build -t nodulegenerator .
  2. To test the docker container to see if it works as expected, test.sh/test.bat will run the container on images provided in test/ folder, and it will check the results (results.json produced by your algorithm) against test/expected_output.json. Please update your test/expected_output.json according to your algorithm result when it is run on the test data.

    . ./test.sh

    If the test runs successfully you will see the message Tests successfully passed... at the end of the output.

    Once you validated that the algorithm works as expected, you might want to simply run the algorithm on the test folder and check the output images for yourself. If you are on a native Linux system you will need to create a results folder that the docker container can write to as follows (WSL users can skip this step) (Note that $SCRIPTPATH was created in the previous test script).

    mkdir $SCRIPTPATH/results
    chmod 777 $SCRIPTPATH/results

    To write the output of the algorithm to the results folder use the following command (note that $SCRIPTPATH was created in the previous test script):

    docker run --rm --memory=11g -v $SCRIPTPATH/test:/input/ -v $SCRIPTPATH/results:/output/ nodulegenerator
  3. Run export.sh/export.bat to save the docker image which runs the following command:

     docker save nodulegenerator | gzip -c > nodulegenerator.tar.gz

Submit your algorithm

Details of how to create an algorithm on grand-challenge and submit it to the node21 challenge will be added here soon.
Please make sure all steps described above work as expected before proceeding. Ensure also that you have an account on grand-challenge.org and that you are a
verified user there.

You might also like...
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*โ€ƒ Mingyuan Zhang1*โ€ƒ Liang Pan1โ€ƒ Zhongang Cai1,2,3โ€ƒ Lei Yang2โ€ƒ

Official Code for ICML 2021 paper
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

A tiny, friendly, strong baseline code for Person-reID (based on pytorch).
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.
This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

RL algorithm  PPO and IRL algorithm AIRL written with Tensorflow.
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

Releases(v1.0addedtag)
Owner
node21challenge
Repositories associated with the grand challenge at https://node21.grand-challenge.org/
node21challenge
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 โ— ์ฃผ์ œ ์„ค๋ช… COVID-19 Pandemic ์ƒํ™ฉ ์† ๋งˆ์Šคํฌ ์ฐฉ์šฉ ์œ ๋ฌด ํŒ๋‹จ ์‹œ์Šคํ…œ ๊ตฌ์ถ• ๋งˆ์Šคํฌ ์ฐฉ์šฉ ์—ฌ๋ถ€, ์„ฑ๋ณ„, ๋‚˜์ด ์ด ์„ธ๊ฐ€์ง€ ๊ธฐ์ค€์— ๋”ฐ๋ผ ์ด 18๊ฐœ์˜ class๋กœ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ชจ๋ธ ?

6 Mar 17, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Xintao 1.4k Dec 25, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋Š” ํฌ๊ฒŒ 6๋‹จ๊ณ„๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค. STEP 0: Input Image Predict ํ•  ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. STEP 1: Make Black and White Image STEP 1 ์€ ์ž…๋ ฅ๋ฐ›์€ ์ด๋ฏธ์ง€์˜ ๊ธ€์ž๋ฅผ ํ‘์ƒ‰์œผ๋กœ, ๋ฐฐ๊ฒฝ์„

Juwan HAN 1 Feb 09, 2022