🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Overview

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful toolset for experts.

Cogitare is built on top of PyTorch.

Documentation • Tutorials • About • Install • Quickstart • Contribution

PyPI version

1. About

It uses the best of PyTorch, Dask, NumPy, and others tools through a simple interface to train, to evaluate, to test models and more.

With Cogitare, you can use classical machine learning algorithms with high performance and develop state-of-the-art models quickly.

Check the tutorials at http://tutorials.cogitare-ai.org/

The primary objectives of Cogitare are:

  • provide an easy-to-use interface to train and evaluate models;
  • provide tools to debug and analyze the model;
  • provide implementations of state-of-the-art models (models for common tasks, ready to train and ready to use);
  • provide ready-to-use implementations of straightforward and classical models (such as LogisticRegression);
  • be compatible with models for a broad range of problems;
  • be compatible with other tools (scikit-learn, etcs);
  • keep growing with the community: accept as many new features as possible;
  • provide a friendly interface to beginners, and powerful features for experts;
  • take the best of the hardware through multi-processing and multi-threading;
  • and others.

Currently, it's a work in progress project that aims to provide a complete toolchain for machine learning and deep learning development, taking the best of cuda and multi-core processing.

2. Install

  • Install PyTorch from http://pytorch.org/

  • Install Cogitare from PIP:

    pip install cogitare
    
  • Cogitare is in active development, so it's recommended to get the latest version from GitHub. To install directly from GitHub, use:

    pip install -e git+https://github.com/cogitare-ai/cogitare#egg=cogitare
    

3. Quickstart

This is a simple tutorial to get started with Cogitare main functionalities.

In this tutorial, we will write a Convolutional Neural Network (CNN) to classify handwritten digits (MNIST).

3.1 Model

We start by defining our CNN model.

When developing a model with Cogitare, your model must extend the cogitare.Model class. This class provides the Model interface, which allows you to train and evaluate the model efficiently.

To implement a model, you must extend the cogitare.Model class and implement the forward() and loss() methods. The forward method will receive the batch. In this way, it is necessary to implement the forward pass through the network in this method, and then return the output of the net. The loss method will receive the output of the forward() and the batch received from the iterator, apply a loss function, compute and return it.

The Model interface will iterate over the dataset, and execute each batch on forward, loss, and backward.

# adapted from https://github.com/pytorch/examples/blob/master/mnist/main.py
from cogitare import Model
from cogitare import utils
from cogitare.data import DataSet, AsyncDataLoader
from cogitare.plugins import EarlyStopping
from cogitare.metrics.classification import accuracy
import cogitare

import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm
import torch.optim as optim

from sklearn.datasets import fetch_mldata

import numpy as np

CUDA = True


cogitare.utils.set_cuda(CUDA)
class CNN(Model):
    
    def __init__(self):
        super(CNN, self).__init__()
        
        # define the model
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
    
    def forward(self, batch):
        # in this sample, each batch will be a tuple containing (input_batch, expected_batch)
        # in forward in are only interested in input so that we can ignore the second item of the tuple
        input, _ = batch
        
        # batch X flat tensor -> batch X 1 channel (gray) X width X heigth
        input = input.view(32, 1, 28, 28)
        
        # pass the data in the net
        x = F.relu(F.max_pool2d(self.conv1(input), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)

        # return the model output
        return F.log_softmax(x, dim=1)
    
    def loss(self, output, batch):
        # in this sample, each batch will be a tuple containing (input_batch, expected_batch)
        # in loss in are only interested in expected so that we can ignore the first item of the tuple
        _, expected = batch
        
        return F.nll_loss(output, expected)

The model class is simple; it only requires de forward and loss methods. By default, Cogitare will backward the loss returned by the loss() method, and optimize the model parameters. If you want to disable the Cogitare backward and optimization steps, just return None in the loss function. If you return None, you are responsible by backwarding and optimizing the parameters.

3.2 Data Loading

In this step, we will load the data from sklearn package.

mnist = fetch_mldata('MNIST original')
mnist.data = (mnist.data / 255).astype(np.float32)

Cogitare provides a toolbox to load and pre-process data for your models. In this introduction, we will use the DataSet and the AsyncDataLoader as examples.

The DataSet is responsible by iterating over multiples data iterators (in our case, we'll have two data iterators: input samples, expected samples).

# as input, the DataSet is expected a list of iterators. In our case, the first iterator is the input 
# data and the second iterator is the target data

# also, we set the batch size to 32 and enable the shuffling

# drop the last batch if its size is different of 32
data = DataSet([mnist.data, mnist.target.astype(int)], batch_size=32, shuffle=True, drop_last=True)

# then, we split our dataset into a train and into a validation sets, by a ratio of 0.8
data_train, data_validation = data.split(0.8)

Notice that Cogitare accepts any iterator as input. Instead of using our DataSet, you can use the mnist.data itself, PyTorch's data loaders, or any other input that acts as an iterator.

In some cases, we can increase the model performance by loading the data using multiples threads/processes or by pre-loading the data before being requested by the model.

With the AsyncDataLoader, we can load N batches ahead of the model execution in parallel. We present this technique in this sample because it can increase performance in a wide range of models (when the data loading or pre-processing is slower than the model execution).

def pre_process(batch):
    input, expected = batch
    
    # the data is a numpy.ndarray (loaded from sklearn), so we need to convert it to Variable
    input = utils.to_variable(input, dtype=torch.FloatTensor)  # converts to a torch Variable of LongTensor
    expected = utils.to_variable(expected, dtype=torch.LongTensor)  # converts to a torch Variable of LongTensor
    return input, expected


# we wrap our data_train and data_validation iterators over the async data loader.
# each loader will load 16 batches ahead of the model execution using 8 workers (8 threads, in this case).
# for each batch, it will be pre-processed in parallel with the preprocess function, that will load the data
# on GPU
data_train = AsyncDataLoader(data_train, buffer_size=16, mode='threaded', workers=8, on_batch_loaded=pre_process)
data_validation = AsyncDataLoader(data_validation, buffer_size=16, mode='threaded', workers=8, on_batch_loaded=pre_process)

to cache the async buffer before training, we can:

data_train.cache()
data_validation.cache()

3.3 Training

Now, we can train our model.

First, lets create the model instance and add the default plugins to watch the training status. The default plugin includes:

  • Progress bar per batch and epoch
  • Plot training and validation losses (if validation_dataset is present)
  • Log training loss
model = CNN()
model.register_default_plugins()

Besides that, we may want to add some extra plugins, such as the EarlyStopping. So, if the model is not decreasing the loss after N epochs, the training stops and the best model is used.

To add the early stopping algorithm, you can use:

early = EarlyStopping(max_tries=10, path='/tmp/model.pt')
# after 10 epochs without decreasing the loss, stop the training and the best model is saved at /tmp/model.pt

# the plugin will execute in the end of each epoch
model.register_plugin(early, 'on_end_epoch')

Also, a common technique is to clip the gradient during training. If you want to clip the grad, you can use:

model.register_plugin(lambda *args, **kw: clip_grad_norm(model.parameters(), 1.0), 'before_step')
# will execute the clip_grad_norm before each optimization step

Now, we define the optimizator, and then start the model training:

optimizer = optim.Adam(model.parameters(), lr=0.001)

if CUDA:
    model = model.cuda()
model.learn(data_train, optimizer, data_validation, max_epochs=100)
2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Model: 

CNN(
  (conv1): Conv2d (1, 10, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d (10, 20, kernel_size=(5, 5), stride=(1, 1))
  (conv2_drop): Dropout2d(p=0.5)
  (fc1): Linear(in_features=320, out_features=50)
  (fc2): Linear(in_features=50, out_features=10)
)

2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Training data: 

DataSet with:
    containers: [
        TensorHolder with 1750x32 samples
	TensorHolder with 1750x32 samples
    ],
    batch size: 32


2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Number of trainable parameters: 21,840
2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Number of non-trainable parameters: 0
2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Total number of parameters: 21,840
2018-02-02 20:59:23 sprawl cogitare.core.model[2443] INFO Starting the training ...
2018-02-02 21:02:04 sprawl cogitare.core.model[2443] INFO Training finished

Stopping training after 10 tries. Best score 0.0909
Model restored from: /tmp/model.pt

To check the model loss and accuracy on the validation dataset:

def model_accuracy(output, data):
    _, indices = torch.max(output, 1)
    
    return accuracy(indices, data[1])

# evaluate the model loss and accuracy over the validation dataset
metrics = model.evaluate_with_metrics(data_validation, {'loss': model.metric_loss, 'accuracy': model_accuracy})

# the metrics is an dict mapping the metric name (loss or accuracy, in this sample) to a list of the accuracy output
# we have a measurement per batch. So, to have a value of the full dataset, we take the mean value:

metrics_mean = {'loss': 0, 'accuracy': 0}
for loss, acc in zip(metrics['loss'], metrics['accuracy']):
    metrics_mean['loss'] += loss
    metrics_mean['accuracy'] += acc.item()

qtd = len(metrics['loss'])

print('Loss: {}'.format(metrics_mean['loss'] / qtd))
print('Accuracy: {}'.format(metrics_mean['accuracy'] / qtd))
Loss: 0.10143917564566948
Accuracy: 0.9846252860411899

One of the advantages of Cogitare is the plug-and-play APIs, which let you add/remove functionalities easily. With this sample, we trained a model with training progress bar, error plotting, early stopping, grad clipping, and model evaluation easily.

4. Contribution

Cogitare is a work in progress project, and any contribution is welcome.

You can contribute testing and providing bug reports, proposing feature ideas, fixing bugs, pushing code, etcs.

  1. You want to propose a new Feature and implement it
    • post about your intended feature, and we shall discuss the design and implementation. Once we agree that the plan looks good, go ahead and implement it.
  2. You want to implement a feature or bug-fix for an outstanding issue
    • Look at the outstanding issues here: https://github.com/cogitare-ai/cogitare/issues
    • Pick an issue and comment on the task that you want to work on this feature
    • If you need more context on a particular issue, please ask and we shall provide.

Once you finish implementing a feature or bugfix, please send a Pull Request to https://github.com/cogitare-ai/cogitare

If you are not familiar with creating a Pull Request, here are some guides:

Comments
  • [Feature request] Plugin to watch the training on web (tensorboard integrated with cogitare plugins)

    [Feature request] Plugin to watch the training on web (tensorboard integrated with cogitare plugins)

    • plot training error\std
    • plot validation error\std
    • time remaining
    • button to stop the training process
    • button to save the model at the current step
    • button to pause the training
    • button to resume the training
    • plot model parameters statistics
    • save/load model execution log, to compare and analyze different executions [1]
    • plot execution graph
    • maybe something like named-scope from tensorflow [2]
    • x-axis: by value or by relative time [3]
    • plot smothing
    • display real-time execution machine/gpu stats
    • add Hyper-parameter option to modify its value from the web interface

    [1] screenshot from 2017-10-31 17-04-09

    [2] screenshot from 2017-10-31 17-13-13

    [3] screenshot from 2017-10-31 17-52-29

    enhancement hard 
    opened by aron-bordin 1
  • [Feature Request] Implement History plugin

    [Feature Request] Implement History plugin

    A plugin that records all (or a fraction, if given a filter) of variables during the training process.

    It watches all hooks, capture the variables, and then can be exported.

    • be compatible with the Cogitare Monitor, implementing a history viewer.
    enhancement medium 
    opened by aron-bordin 0
  • [Feature Request] Add map parameter to dataholders

    [Feature Request] Add map parameter to dataholders

    A callable parameter, that can act over the sample before generating the batch.

    It should allow easy-to-use preprocessing algorithms through a distributed interface (threads, processes, machines)

    Add on dataholder:

    • on_sample_loaded
    • on_batch_loaded

    Add on asyncloader:

    • on_batch_loaded (useful for loading batches to gpu before using)
    enhancement 
    opened by aron-bordin 0
  • before first release, profile everything to make mem/speed improvements

    before first release, profile everything to make mem/speed improvements

    Logs.

    18/09 - replaced python indices by numpy indices and python shuffle by numpy shuffle in dataholder. In a dataset with millions of samples, improved by ~15x.

    enhancement 
    opened by aron-bordin 0
  • [Feature Request] add utils.auto_optim

    [Feature Request] add utils.auto_optim

    add a simple function on utils, which receives the optimizer name, the model parameters, and its arguments. This function will create the optimizer and return it.

    (if testing multiples optimizers, it's not required to change the code to change an optimizer. you can, for example, use an argument named "optim" and just pass this argument to the function)

    enhancement help wanted easy 
    opened by aron-bordin 0
  • [Feature Request] Implement Interactive SIGINT Interrupt

    [Feature Request] Implement Interactive SIGINT Interrupt

    A plugin that listens SIGINT signal during training.

    When receiving the signal, gives some options to the interactive user:

    • save/load the model state
    • quit training
    • maybe something else
    enhancement help wanted easy 
    opened by aron-bordin 0
Releases(v0.1.0)
  • v0.1.0(Feb 3, 2018)

    The first release of Cogitare.

    Support:

    • Model

    • Sequential Model

    • DataHolder

    • Sequential DataHolder

    • DataSet

    • Sequential DataSet

    • AsyncDataLoader

    • Metrics (classification, spatial)

    • Classic Models (LR, MLP)

    • Web Monitor (system usage, system details)

    • Early stopping plugin

    • Evaluator plugin (different test metrics on the model)

    • Logger

    • Plotting (matplotlib)

    • Progress Bars

    • Some utilities

    • Documentation with examples

    • Tests: 92% of coverage (8% remaining is of the Monitor undefined interface)

    Source code(tar.gz)
    Source code(zip)
Owner
Cogitare - Modern and Easy Deep Learning with Python
A modern, fast, and modular deep learning and machine learning framework for Python
Cogitare - Modern and Easy Deep Learning with Python
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022