SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

Overview

SparseInst πŸš€

A simple framework for real-time instance segmentation, CVPR 2022
by
Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Zhang, Chang Huang, Zhaoxiang Zhang, Wenyu Liu
(†: corresponding author)

Highlights



PWC

  • SparseInst presents a new object representation method, i.e., Instance Activation Maps (IAM), to adaptively highlight informative regions of objects for recognition.
  • SparseInst is a simple, efficient, and fully convolutional framework without non-maximum suppression (NMS) or sorting, and easy to deploy!
  • SparseInst achieves good trade-off between speed and accuracy, e.g., 37.9 AP and 40 FPS with 608x input.

Updates

This project is under active development, please stay tuned! β˜•

  • [2022-4-29]: We fix the common issue about the visualization demo.py, e.g., ValueError: GenericMask cannot handle ....

  • [2022-4-7]: We provide the demo code for visualization and inference on images. Besides, we have added more backbones for SparseInst, including ResNet-101, CSPDarkNet, and PvTv2. We are still supporting more backbones.

  • [2022-3-25]: We have released the code and models for SparseInst!

Overview

SparseInst is a conceptually novel, efficient, and fully convolutional framework for real-time instance segmentation. In contrast to region boxes or anchors (centers), SparseInst adopts a sparse set of instance activation maps as object representation, to highlight informative regions for each foreground objects. Then it obtains the instance-level features by aggregating features according to the highlighted regions for recognition and segmentation. The bipartite matching compels the instance activation maps to predict objects in a one-to-one style, thus avoiding non-maximum suppression (NMS) in post-processing. Owing to the simple yet effective designs with instance activation maps, SparseInst has extremely fast inference speed and achieves 40 FPS and 37.9 AP on COCO (NVIDIA 2080Ti), significantly outperforms the counter parts in terms of speed and accuracy.

Models

We provide two versions of SparseInst, i.e., the basic IAM (3x3 convolution) and the Group IAM (G-IAM for short), with different backbones. All models are trained on MS-COCO train2017.

Fast models

model backbone input aug APval AP FPS weights
SparseInst R-50 640 ✘ 32.8 33.2 44.3 model
SparseInst R-50-vd 640 ✘ 34.1 34.5 42.6 model
SparseInst (G-IAM) R-50 608 ✘ 33.4 34.0 44.6 model
SparseInst (G-IAM) R-50 608 βœ“ 34.2 34.7 44.6 model
SparseInst (G-IAM) R-50-DCN 608 βœ“ 36.4 36.8 41.6 model
SparseInst (G-IAM) R-50-vd 608 βœ“ 35.6 36.1 42.8 model
SparseInst (G-IAM) R-50-vd-DCN 608 βœ“ 37.4 37.9 40.0 model
SparseInst (G-IAM) R-50-vd-DCN 640 βœ“ 37.7 38.1 39.3 model

Larger models

model backbone input aug APval AP FPS weights
SparseInst (G-IAM) R-101 640 ✘ 34.9 35.5 - model
SparseInst (G-IAM) R-101-DCN 640 ✘ 36.4 36.9 - model

SparseInst with Vision Transformers

model backbone input aug APval AP FPS weights
SparseInst (G-IAM) PVTv2-B1 640 ✘ 35.3 36.0 33.5 (48.9↑) model
SparseInst (G-IAM) PVTv2-B2-li 640 ✘ 37.2 38.2 26.5 model

↑: measured on RTX 3090.

Note:

  • We will continue adding more models including more efficient convolutional networks, vision transformers, and larger models for high performance and high speed, please stay tuned 😁 !
  • Inference speeds are measured on one NVIDIA 2080Ti unless specified.
  • We haven't adopt TensorRT or other tools to accelerate the inference of SparseInst. However, we are working on it now and will provide support for ONNX, TensorRT, MindSpore, Blade, and other frameworks as soon as possible!
  • AP denotes AP evaluated on MS-COCO test-dev2017
  • input denotes the shorter side of the input, e.g., 512x864 and 608x864, we keep the aspect ratio of the input and the longer side is no more than 864.
  • The inference speed might slightly change on different machines (2080 Ti) and different versions of detectron (we mainly use v0.3). If the change is sharp, e.g., > 5ms, please feel free to contact us.
  • For aug (augmentation), we only adopt the simple random crop (crop size: [384, 600]) provided by detectron2.
  • We adopt weight decay=5e-2 as default setting, which is slightly different from the original paper.
  • [Weights on BaiduPan]: we also provide trained models on BaiduPan: ShareLink (password: lkdo).

Installation and Prerequisites

This project is built upon the excellent framework detectron2, and you should install detectron2 first, please check official installation guide for more details.

Note: we mainly use v0.3 of detectron2 for experiments and evaluations. Besides, we also test our code on the newest version v0.6. If you find some bugs or incompatibility problems of higher version of detectron2, please feel free to raise a issue!

Install the detectron2:

git clone https://github.com/facebookresearch/detectron2.git
# if you swith to a specific version, e.g., v0.3 (recommended)
git checkout tags/v0.3
# build detectron2
python setup.py build develop

Getting Start

Testing SparseInst

Before testing, you should specify the config file <CONFIG> and the model weights <MODEL-PATH>. In addition, you can change the input size by setting the INPUT.MIN_SIZE_TEST in both config file or commandline.

  • [Performance Evaluation] To obtain the evaluation results, e.g., mask AP on COCO, you can run:
python train_net.py --config-file <CONFIG> --num-gpus <GPUS> --eval MODEL.WEIGHTS <MODEL-PATH>
# example:
python train_net.py --config-file configs/sparse_inst_r50_giam.yaml --num-gpus 8 --eval MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth
  • [Inference Speed] To obtain the inference speed (FPS) on one GPU device, you can run:
python test_net.py --config-file <CONFIG> MODEL.WEIGHTS <MODEL-PATH> INPUT.MIN_SIZE_TEST 512
# example:
python test_net.py --config-file configs/sparse_inst_r50_giam.yaml MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512

Note:

  • The test_net.py only supports 1 GPU and 1 image per batch for measuring inference speed.
  • The inference time consists of the pure forward time and the post-processing time. While the evaluation processing, data loading, and pre-processing for wrappers (e.g., ImageList) are not included.
  • COCOMaskEvaluator is modified from COCOEvaluator for evaluating mask-only results.

Visualizing Images with SparseInst

To inference or visualize the segmentation results on your images, you can run:

python demo.py --config-file <CONFIG> --input <IMAGE-PATH> --output results --opts MODEL.WEIGHTS <MODEL-PATH>
# example
python demo.py --config-file configs/sparse_inst_r50_giam.yaml --input datasets/coco/val2017/* --output results --opt MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512
  • Besides, the demo.py also supports inference on video (--video-input), camera (--webcam). For inference on video, you might refer to issue #9 to avoid someerrors.
  • --opts supports modifications to the config-file, e.g., INPUT.MIN_SIZE_TEST 512.
  • --input can be single image or a folder of images, e.g., xxx/*.
  • If --output is not specified, a popup window will show the visualization results for each image.
  • Lowering the confidence-threshold will show more instances but with more false positives.

Visualization results (SparseInst-R50-GIAM)

Training SparseInst

To train the SparseInst model on COCO dataset with 8 GPUs. 8 GPUs are required for the training. If you only have 4 GPUs or GPU memory is limited, it doesn't matter and you can reduce the batch size through SOLVER.IMS_PER_BATCH or reduce the input size. If you adjust the batch size, learning schedule should be adjusted according to the linear scaling rule.

python train_net.py --config-file <CONFIG> --num-gpus 8 
# example
python train_net.py --config-file configs/sparse_inst_r50vd_dcn_giam_aug.yaml --num-gpus 8

Acknowledgements

SparseInst is based on detectron2, OneNet, DETR, and timm, and we sincerely thanks for their code and contribution to the community!

Citing SparseInst

If you find SparseInst is useful in your research or applications, please consider giving us a star 🌟 and citing SparseInst by the following BibTeX entry.

@inproceedings{Cheng2022SparseInst,
  title     =   {Sparse Instance Activation for Real-Time Instance Segmentation},
  author    =   {Cheng, Tianheng and Wang, Xinggang and Chen, Shaoyu and Zhang, Wenqiang and Zhang, Qian and Huang, Chang and Zhang, Zhaoxiang and Liu, Wenyu},
  booktitle =   {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =   {2022}
}

License

SparseInst is released under the MIT Licence.

Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST, Lead by @xinggangw
Hust Visual Learning Team
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos HernΓ‘ndez 80 Dec 05, 2022
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Γ–zlem TaşkΔ±n 0 Feb 23, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021