SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

Overview

SparseInst 🚀

A simple framework for real-time instance segmentation, CVPR 2022
by
Tianheng Cheng, Xinggang Wang, Shaoyu Chen, Wenqiang Zhang, Qian Zhang, Chang Huang, Zhaoxiang Zhang, Wenyu Liu
(: corresponding author)

Highlights



PWC

  • SparseInst presents a new object representation method, i.e., Instance Activation Maps (IAM), to adaptively highlight informative regions of objects for recognition.
  • SparseInst is a simple, efficient, and fully convolutional framework without non-maximum suppression (NMS) or sorting, and easy to deploy!
  • SparseInst achieves good trade-off between speed and accuracy, e.g., 37.9 AP and 40 FPS with 608x input.

Updates

This project is under active development, please stay tuned!

  • [2022-4-29]: We fix the common issue about the visualization demo.py, e.g., ValueError: GenericMask cannot handle ....

  • [2022-4-7]: We provide the demo code for visualization and inference on images. Besides, we have added more backbones for SparseInst, including ResNet-101, CSPDarkNet, and PvTv2. We are still supporting more backbones.

  • [2022-3-25]: We have released the code and models for SparseInst!

Overview

SparseInst is a conceptually novel, efficient, and fully convolutional framework for real-time instance segmentation. In contrast to region boxes or anchors (centers), SparseInst adopts a sparse set of instance activation maps as object representation, to highlight informative regions for each foreground objects. Then it obtains the instance-level features by aggregating features according to the highlighted regions for recognition and segmentation. The bipartite matching compels the instance activation maps to predict objects in a one-to-one style, thus avoiding non-maximum suppression (NMS) in post-processing. Owing to the simple yet effective designs with instance activation maps, SparseInst has extremely fast inference speed and achieves 40 FPS and 37.9 AP on COCO (NVIDIA 2080Ti), significantly outperforms the counter parts in terms of speed and accuracy.

Models

We provide two versions of SparseInst, i.e., the basic IAM (3x3 convolution) and the Group IAM (G-IAM for short), with different backbones. All models are trained on MS-COCO train2017.

Fast models

model backbone input aug APval AP FPS weights
SparseInst R-50 640 32.8 33.2 44.3 model
SparseInst R-50-vd 640 34.1 34.5 42.6 model
SparseInst (G-IAM) R-50 608 33.4 34.0 44.6 model
SparseInst (G-IAM) R-50 608 34.2 34.7 44.6 model
SparseInst (G-IAM) R-50-DCN 608 36.4 36.8 41.6 model
SparseInst (G-IAM) R-50-vd 608 35.6 36.1 42.8 model
SparseInst (G-IAM) R-50-vd-DCN 608 37.4 37.9 40.0 model
SparseInst (G-IAM) R-50-vd-DCN 640 37.7 38.1 39.3 model

Larger models

model backbone input aug APval AP FPS weights
SparseInst (G-IAM) R-101 640 34.9 35.5 - model
SparseInst (G-IAM) R-101-DCN 640 36.4 36.9 - model

SparseInst with Vision Transformers

model backbone input aug APval AP FPS weights
SparseInst (G-IAM) PVTv2-B1 640 35.3 36.0 33.5 (48.9) model
SparseInst (G-IAM) PVTv2-B2-li 640 37.2 38.2 26.5 model

: measured on RTX 3090.

Note:

  • We will continue adding more models including more efficient convolutional networks, vision transformers, and larger models for high performance and high speed, please stay tuned 😁 !
  • Inference speeds are measured on one NVIDIA 2080Ti unless specified.
  • We haven't adopt TensorRT or other tools to accelerate the inference of SparseInst. However, we are working on it now and will provide support for ONNX, TensorRT, MindSpore, Blade, and other frameworks as soon as possible!
  • AP denotes AP evaluated on MS-COCO test-dev2017
  • input denotes the shorter side of the input, e.g., 512x864 and 608x864, we keep the aspect ratio of the input and the longer side is no more than 864.
  • The inference speed might slightly change on different machines (2080 Ti) and different versions of detectron (we mainly use v0.3). If the change is sharp, e.g., > 5ms, please feel free to contact us.
  • For aug (augmentation), we only adopt the simple random crop (crop size: [384, 600]) provided by detectron2.
  • We adopt weight decay=5e-2 as default setting, which is slightly different from the original paper.
  • [Weights on BaiduPan]: we also provide trained models on BaiduPan: ShareLink (password: lkdo).

Installation and Prerequisites

This project is built upon the excellent framework detectron2, and you should install detectron2 first, please check official installation guide for more details.

Note: we mainly use v0.3 of detectron2 for experiments and evaluations. Besides, we also test our code on the newest version v0.6. If you find some bugs or incompatibility problems of higher version of detectron2, please feel free to raise a issue!

Install the detectron2:

git clone https://github.com/facebookresearch/detectron2.git
# if you swith to a specific version, e.g., v0.3 (recommended)
git checkout tags/v0.3
# build detectron2
python setup.py build develop

Getting Start

Testing SparseInst

Before testing, you should specify the config file <CONFIG> and the model weights <MODEL-PATH>. In addition, you can change the input size by setting the INPUT.MIN_SIZE_TEST in both config file or commandline.

  • [Performance Evaluation] To obtain the evaluation results, e.g., mask AP on COCO, you can run:
python train_net.py --config-file <CONFIG> --num-gpus <GPUS> --eval MODEL.WEIGHTS <MODEL-PATH>
# example:
python train_net.py --config-file configs/sparse_inst_r50_giam.yaml --num-gpus 8 --eval MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth
  • [Inference Speed] To obtain the inference speed (FPS) on one GPU device, you can run:
python test_net.py --config-file <CONFIG> MODEL.WEIGHTS <MODEL-PATH> INPUT.MIN_SIZE_TEST 512
# example:
python test_net.py --config-file configs/sparse_inst_r50_giam.yaml MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512

Note:

  • The test_net.py only supports 1 GPU and 1 image per batch for measuring inference speed.
  • The inference time consists of the pure forward time and the post-processing time. While the evaluation processing, data loading, and pre-processing for wrappers (e.g., ImageList) are not included.
  • COCOMaskEvaluator is modified from COCOEvaluator for evaluating mask-only results.

Visualizing Images with SparseInst

To inference or visualize the segmentation results on your images, you can run:

python demo.py --config-file <CONFIG> --input <IMAGE-PATH> --output results --opts MODEL.WEIGHTS <MODEL-PATH>
# example
python demo.py --config-file configs/sparse_inst_r50_giam.yaml --input datasets/coco/val2017/* --output results --opt MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512
  • Besides, the demo.py also supports inference on video (--video-input), camera (--webcam). For inference on video, you might refer to issue #9 to avoid someerrors.
  • --opts supports modifications to the config-file, e.g., INPUT.MIN_SIZE_TEST 512.
  • --input can be single image or a folder of images, e.g., xxx/*.
  • If --output is not specified, a popup window will show the visualization results for each image.
  • Lowering the confidence-threshold will show more instances but with more false positives.

Visualization results (SparseInst-R50-GIAM)

Training SparseInst

To train the SparseInst model on COCO dataset with 8 GPUs. 8 GPUs are required for the training. If you only have 4 GPUs or GPU memory is limited, it doesn't matter and you can reduce the batch size through SOLVER.IMS_PER_BATCH or reduce the input size. If you adjust the batch size, learning schedule should be adjusted according to the linear scaling rule.

python train_net.py --config-file <CONFIG> --num-gpus 8 
# example
python train_net.py --config-file configs/sparse_inst_r50vd_dcn_giam_aug.yaml --num-gpus 8

Acknowledgements

SparseInst is based on detectron2, OneNet, DETR, and timm, and we sincerely thanks for their code and contribution to the community!

Citing SparseInst

If you find SparseInst is useful in your research or applications, please consider giving us a star 🌟 and citing SparseInst by the following BibTeX entry.

@inproceedings{Cheng2022SparseInst,
  title     =   {Sparse Instance Activation for Real-Time Instance Segmentation},
  author    =   {Cheng, Tianheng and Wang, Xinggang and Chen, Shaoyu and Zhang, Wenqiang and Zhang, Qian and Huang, Chang and Zhang, Zhaoxiang and Liu, Wenyu},
  booktitle =   {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =   {2022}
}

License

SparseInst is released under the MIT Licence.

Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST, Lead by @xinggangw
Hust Visual Learning Team
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022