YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

Overview

YOLOX-Paddle

A reproduction of YOLOX by PaddlePaddle

数据集准备

下载COCO数据集,准备为如下路径

/home/aistudio
|-- COCO
|   |-- annotions
|   |-- train2017
|   |-- val2017

除了常用的图像处理库,需要安装额外的包

pip install gputil==1.4.0 loguru pycocotools

进入仓库根目录,编译安装(推荐使用AIStudio

cd YOLOX-Paddle
pip install -v -e .

如果使用本地机器出现编译失败,需要修改YOLOX-Paddle/yolox/layers/csrc/cocoeval/cocoeval.h中导入pybind11的include文件为本机目录,使用如下命令获取pybind11include目录

>>> import pybind11
>>> pybind11.get_include()
'/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include'

AIStudio路径

#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/numpy.h>
#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/pybind11.h>
#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/stl.h>
#include </opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/pybind11/include/pybind11/stl_bind.h>

成功后使用pip list可看到安装模块

yolox    0.1.0    /home/aistudio/YOLOX-Paddle

设置YOLOX_DATADIR环境变量\或者`ln -s /path/to/your/COCO ./datasets/COCO`来指定COCO数据集位置

export YOLOX_DATADIR=/home/aistudio/

训练

python tools/train.py -n yolox-nano -d 1 -b 64

得到的权重保存至./YOLOX_outputs/nano/yolox_nano.pdparams

验证

python tools/eval.py -n yolox-nano -c ./YOLOX_outputs/nano/yolox_nano.pdparams -b 64 -d 1 --conf 0.001
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.259
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.416
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.269
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.083
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.274
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.413
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.242
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.384
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.419
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.154
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.470
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.632

并提供了官方预训练权重,code:ybxc

Model size mAPval
0.5:0.95
mAPtest
0.5:0.95
Speed V100
(ms)
Params
(M)
FLOPs
(G)
YOLOX-s 640 40.5 40.5 9.8 9.0 26.8
YOLOX-m 640 46.9 47.2 12.3 25.3 73.8
YOLOX-l 640 49.7 50.1 14.5 54.2 155.6
YOLOX-x 640 51.1 51.5 17.3 99.1 281.9
YOLOX-Darknet53 640 47.7 48.0 11.1 63.7 185.3

推理

python tools/demo.py image -n yolox-nano -c ./YOLOX_outputs/nano/yolox_nano.pdparams --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result

推理结果如下所示

Train Custom Data

相信这是大部分开发者最关心的事情,本章节参考如下仓库,本仓库现已集成

  • Converting darknet or yolov5 datasets to COCO format for YOLOX: YOLO2COCO from Daniel

数据准备

我们同样以YOLOv5格式的光栅数据集为例,可在此处下载 进入仓库根目录,下载解压,数据集应该具有如下目录:

YOLOX-Paddle
|-- guangshan
|   |-- images
|      |-- train
|      |-- val
|   |-- labels
|      |-- train
|      |-- val

现在运行如下命令

bash prepare.sh

然后添加一个classes.txt,你应该得到如下目录,并在生成的YOLOV5_COCO_format得到COCO数据格式的数据集:

YOLOX-Paddle/YOLO2COCO/dataset
|-- YOLOV5
|   |-- guangshan
|   |   |-- images
|   |   |-- labels
|   |-- train.txt
|   |-- val.txt
|   |-- classes.txt
|-- YOLOV5_COCO_format
|   |-- train2017
|   |-- val2017
|   |-- annotations

可参考YOLOV5_COCO_format下的README.md

训练、验证、推理

配置custom训练文件YOLOX-Paddle/exps/example/custom/nano.py,修改self.num_classes为你的类别数,其余配置可根据喜好调参,使用如下命令启动训练

python tools/train.py -f ./exps/example/custom/nano.py -n yolox-nano -d 1 -b 8

使用如下命令启动验证

python tools/eval.py -f ./exps/example/custom/nano.py -n yolox-nano -c ./YOLOX_outputs_custom/nano/best_ckpt.pdparams -b 64 -d 1 --conf 0.001

使用如下命令启动推理

python tools/demo.py image -f ./exps/example/custom/nano.py -n yolox-nano -c ./YOLOX_outputs_custom/nano/best_ckpt.pdparams --path test.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result

其余部分参考COCO数据集,整个训练文件保存在YOLOX_outputs_custom文件夹

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
CSDN主页 Deep Hao的CSDN主页
GitHub主页 Deep Hao的GitHub主页
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!
Owner
QuanHao Guo
Master at UESTC
QuanHao Guo
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022