这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Overview

Facenet:人脸识别模型在Pytorch当中的实现


目录

  1. 性能情况 Performance
  2. 所需环境 Environment
  3. 注意事项 Attention
  4. 文件下载 Download
  5. 预测步骤 How2predict
  6. 训练步骤 How2train
  7. 参考资料 Reference

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 accuracy
CASIA-WebFace facenet_mobilenet.pth LFW 160x160 98.23%
CASIA-WebFace facenet_inception_resnetv1.pth LFW 160x160 98.78%

所需环境

pytorch==1.2.0

文件下载

已经训练好的facenet_mobilenet.pth和facenet_inception_resnetv1.pth可以在百度网盘下载。
链接: https://pan.baidu.com/s/1slUYdpskFpUX62WpJeLByA 提取码: fe1w

训练用的CASIA-WebFaces数据集以及评估用的LFW数据集可以在百度网盘下载。
链接: https://pan.baidu.com/s/1fhiHlylAFVoR43yfDbi4Ag 提取码: gkch

预测步骤

a、使用预训练权重

  1. 下载完库后解压,在model_data文件夹里已经有了facenet_mobilenet.pth,可直接运行predict.py输入:
img\1_001.jpg
img\1_002.jpg
  1. 也可以在百度网盘下载facenet_inception_resnetv1.pth,放入model_data,修改facenet.py文件的model_path后,输入:
img\1_001.jpg
img\1_002.jpg

b、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在facenet.py文件里面,在如下部分修改model_path和backbone使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,backbone对应主干特征提取网络
_defaults = {
    "model_path"    : "model_data/facenet_mobilenet.pth",
    "input_shape"   : (160, 160, 3),
    "backbone"      : "mobilenet",
    "cuda"          : True,
}
  1. 运行predict.py,输入
img\1_001.jpg
img\1_002.jpg

训练步骤

  1. 本文使用如下格式进行训练。
|-datasets
    |-people0
        |-123.jpg
        |-234.jpg
    |-people1
        |-345.jpg
        |-456.jpg
    |-...
  1. 下载好数据集,将训练用的CASIA-WebFaces数据集以及评估用的LFW数据集,解压后放在根目录。
  2. 在训练前利用txt_annotation.py文件生成对应的cls_train.txt。
  3. 利用train.py训练facenet模型,训练前,根据自己的需要选择backbone,model_path和backbone一定要对应。
  4. 运行train.py即可开始训练。

评估步骤

  1. 下载好评估数据集,将评估用的LFW数据集,解压后放在根目录
  2. 在eval_LFW.py设置使用的主干特征提取网络和网络权值。
  3. 运行eval_LFW.py来进行模型准确率评估。

Reference

https://github.com/davidsandberg/facenet
https://github.com/timesler/facenet-pytorch

You might also like...
Comments
  • 训练过程经常遇到BrokenPipeError: [Errno 32] Broken pipe

    训练过程经常遇到BrokenPipeError: [Errno 32] Broken pipe

    Epoch 1/100: 100%|██████████| 583/583 [07:36<00:00, 1.07it/s, accuracy=0.89, lr=0.01, total_CE_loss=9.02, total_triple_loss=0.101]Traceback (most recent call last): File "/opt/vitis_ai/conda/envs/vitis-ai-optimizer_pytorch/lib/python3.7/multiprocessing/queues.py", line 242, in _feed send_bytes(obj) File "/opt/vitis_ai/conda/envs/vitis-ai-optimizer_pytorch/lib/python3.7/multiprocessing/connection.py", line 200, in send_bytes self._send_bytes(m[offset:offset + size]) File "/opt/vitis_ai/conda/envs/vitis-ai-optimizer_pytorch/lib/python3.7/multiprocessing/connection.py", line 404, in _send_bytes self._send(header + buf) File "/opt/vitis_ai/conda/envs/vitis-ai-optimizer_pytorch/lib/python3.7/multiprocessing/connection.py", line 368, in _send n = write(self._handle, buf) BrokenPipeError: [Errno 32] Broken pipe

    opened by jia0511 1
  • lfw数据集处理有什么区别? 精度目前97%

    lfw数据集处理有什么区别? 精度目前97%

    使用facenet_mobilenet.pth 在 LFW 数据集上,调整图片大小为 160x160 ,得到了0.97的精度,没有到| 98.23%,而在百度网盘提供的slfw数据上,精度可以到98%, 但是我看网页上提供的数据图片大小是96*112,请问下,LFW处理上应用什么其他方法吗?

    Test Epoch: [5888/6000 (96%)]: : 24it [00:32, 1.34s/it] Accuracy: 0.97383+-0.00675 Best_thresholds: 1.16000 Validation rate: 0.82100+-0.03127 @ FAR=0.00100

    opened by xiaomujiang 1
Releases(v2.0)
Owner
Bubbliiiing
Bubbliiiing
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022