An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

Overview

MixHop and N-GCN

PWC Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019) and "A Higher-Order Graph Convolutional Layer" (NeurIPS 2018).


Abstract

Recent methods generalize convolutional layers from Euclidean domains to graph-structured data by approximating the eigenbasis of the graph Laplacian. The computationally-efficient and broadly-used Graph ConvNet of Kipf & Welling, over-simplifies the approximation, effectively rendering graph convolution as a neighborhood-averaging operator. This simplification restricts the model from learning delta operators, the very premise of the graph Laplacian. In this work, we propose a new Graph Convolutional layer which mixes multiple powers of the adjacency matrix, allowing it to learn delta operators. Our layer exhibits the same memory footprint and computational complexity as a GCN. We illustrate the strength of our proposed layer on both synthetic graph datasets, and on several real-world citation graphs, setting the record state-of-the-art on Pubmed.

This repository provides a PyTorch implementation of MixHop and N-GCN as described in the papers:

MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina Lerman, Greg Ver Steeg, and Aram Galstyan. ICML, 2019. [Paper]

A Higher-Order Graph Convolutional Layer. Sami A Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Hrayr Harutyunyan. NeurIPS, 2018. [Paper]

The original TensorFlow implementation of MixHop is available [Here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-sparse      0.3.0

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Cora` is included in the `input/` directory. In addition to the edgelist there is a JSON file with the sparse features and a csv with the target variable.

The **feature matrix** is a sparse binary one it is stored as a json. Nodes are keys of the json and feature indices are the values. For each node feature column ids are stored as elements of a list. The feature matrix is structured as:

{ 0: [0, 1, 38, 1968, 2000, 52727],
  1: [10000, 20, 3],
  2: [],
  ...
  n: [2018, 10000]}

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

Training an N-GCN/MixHop model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --edge-path       STR    Edge list csv.         Default is `input/cora_edges.csv`.
  --features-path   STR    Features json.         Default is `input/cora_features.json`.
  --target-path     STR    Target classes csv.    Default is `input/cora_target.csv`.

Model options

  --model             STR     Model variant.                 Default is `mixhop`.               
  --seed              INT     Random seed.                   Default is 42.
  --epochs            INT     Number of training epochs.     Default is 2000.
  --early-stopping    INT     Early stopping rounds.         Default is 10.
  --training-size     INT     Training set size.             Default is 1500.
  --validation-size   INT     Validation set size.           Default is 500.
  --learning-rate     FLOAT   Adam learning rate.            Default is 0.01.
  --dropout           FLOAT   Dropout rate value.            Default is 0.5.
  --lambd             FLOAT   Regularization coefficient.    Default is 0.0005.
  --layers-1          LST     Layer sizes (upstream).        Default is [200, 200, 200]. 
  --layers-2          LST     Layer sizes (bottom).          Default is [200, 200, 200].
  --cut-off           FLOAT   Norm cut-off for pruning.      Default is 0.1.
  --budget            INT     Architecture neuron budget.    Default is 60.

Examples

The following commands learn a neural network and score on the test set. Training a model on the default dataset.

$ python src/main.py

Training a MixHop model for a 100 epochs.

$ python src/main.py --epochs 100

Increasing the learning rate and the dropout.

$ python src/main.py --learning-rate 0.1 --dropout 0.9

Training a model with diffusion order 2:

$ python src/main.py --layers 64 64

Training an N-GCN model:

$ python src/main.py --model ngcn

License


Comments
  • FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    hello, when i run src/main.py,the error message appears: File "pandas_libs\parsers.pyx", line 361, in pandas._libs.parsers.TextReader.cinit File "pandas_libs\parsers.pyx", line 653, in pandas._libs.parsers.TextReader._setup_parser_source FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    do you know how to solve it?

    opened by tanjia123456 4
  • Citeseer and Pubmed Datasets

    Citeseer and Pubmed Datasets

    Hi Benedek,

    Thank you so much for the code. I want to run your code on Citeseer and Pubmed datasets. Would you mind providing Citeseer and Pubmed data in this format? By the way, after running MixHop model with default parameters I got the test accuracy 0.7867. Did the accuracy depend on the system that the code is running?

    Thanks in advance

    opened by bousejin 3
  • IndexError:

    IndexError:

    hello, when I run main.py, the error message occurs:

    File "D:\anaconda3.4\lib\site-packages\torch_sparse\spmm.py", line 30, in spmm out = matrix[col] IndexError: index 10241 is out of bounds for dimension 0 with size 10241

    the content of the spmm.py: `# import torch from torch_scatter import scatter_add

    def spmm(index, value, m, n, matrix): """Matrix product of sparse matrix with dense matrix. 稀疏矩阵与稠密矩阵的矩阵乘积

    Args:
        index (:class:`LongTensor`): The index tensor of sparse matrix.
        value (:class:`Tensor`): The value tensor of sparse matrix.
        m (int): The first dimension of corresponding dense matrix.
        n (int): The second dimension of corresponding dense matrix.
        matrix (:class:`Tensor`): The dense matrix.
      :rtype: :class:`Tensor`
    """
    
    assert n == matrix.size(0)
    
    row, col = index
    
    matrix = matrix if matrix.dim() > 1 else matrix.unsqueeze(-1)
    
    out = matrix[col]
    out = out * value.unsqueeze(-1)
    out = scatter_add(out, row, dim=0, dim_size=m)
    
    return out
    

    ` by the way, I use my own datasets, and the number of node is 10242. do you know how to solve it?

    opened by tanjia123456 2
  • some problem about codes

    some problem about codes

    When I run the code, some error occured as follows: MixHop-and-N-GCN-master\src\utils.py", line 45, in feature_reader out_features["indices"] = torch.LongTensor(np.concatenate([features.row.reshape(-1,1), features.col.reshape(-1,1)],axis=1).T) TypeError: can't convert np.ndarray of type numpy.int32. The only supported types are: float64, float32, float16, int64, int32, int16, int8, and uint8. I search it on the Internet and found that it seems to be a list of lists that are not of the same length. I was stuck in it and do not know how to correct it! Looking forward to your help!!Thanks!!

    opened by junkangwu 2
  • About

    About "torch_scatter"

    I cannot successfully install "torch_scatter". When I run the command line : pip3 install torch_scatter, an error always occurs, just like below. I tried to solve the problem, but I don't find the correct method. Could you help me? Thanks a lot!

    The error: ... cpu/scatter.cpp:1:29: fatal error: torch/extension.h: No such file or directory compilation terminated. error: command 'x86_64-linux-gnu-gcc' failed with exit status 1


    Failed building wheel for torch-scatter Running setup.py clean for torch-scatter Failed to build torch-scatter Installing collected packages: torch-scatter Running setup.py install for torch-scatter ... error Complete output from command /usr/bin/python3 -u -c "import setuptools, tokenize;file='/tmp/pip-build-ijd9s63n/torch-scatter/setup.py';exec(compile(getattr(tokenize, 'open', open)(file).read().replace('\r\n', '\n'), file, 'exec'))" install --record /tmp/pip-4tkx7v_s-record/install-record.txt --single-version-externally-managed --compile: running install running build running build_py creating build creating build/lib.linux-x86_64-3.5 creating build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/mul.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/mean.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/sub.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/min.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/std.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/init.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/max.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/div.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/add.py -> build/lib.linux-x86_64-3.5/torch_scatter creating build/lib.linux-x86_64-3.5/test copying test/test_multi_gpu.py -> build/lib.linux-x86_64-3.5/test copying test/utils.py -> build/lib.linux-x86_64-3.5/test copying test/test_std.py -> build/lib.linux-x86_64-3.5/test copying test/init.py -> build/lib.linux-x86_64-3.5/test copying test/test_forward.py -> build/lib.linux-x86_64-3.5/test copying test/test_backward.py -> build/lib.linux-x86_64-3.5/test creating build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/ext.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/init.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/gen.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils running build_ext building 'torch_scatter.scatter_cpu' extension creating build/temp.linux-x86_64-3.5 creating build/temp.linux-x86_64-3.5/cpu x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include/TH -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include/THC -I/usr/include/python3.5m -c cpu/scatter.cpp -o build/temp.linux-x86_64-3.5/cpu/scatter.o -Wno-unused-variable -DTORCH_EXTENSION_NAME=scatter_cpu -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++11 cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ cpu/scatter.cpp:1:29: fatal error: torch/extension.h: No such file or directory compilation terminated. error: command 'x86_64-linux-gnu-gcc' failed with exit status 1

    ----------------------------------------
    

    Command "/usr/bin/python3 -u -c "import setuptools, tokenize;file='/tmp/pip-build-ijd9s63n/torch-scatter/setup.py';exec(compile(getattr(tokenize, 'open', open)(file).read().replace('\r\n', '\n'), file, 'exec'))" install --record /tmp/pip-4tkx7v_s-record/install-record.txt --single-version-externally-managed --compile" failed with error code 1 in /tmp/pip-build-ijd9s63n/torch-scatter/ You are using pip version 8.1.1, however version 19.1.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command.

    opened by zhangguanghui1 2
  • running error

    running error

    hello, when I run main.py, the error message occurs: File "/home/tj/anaconda3/lib/python3.6/site-packages/torch_sparse/init.py", line 22, in raise OSError(e) OSError: libcusparse.so.10.0: cannot open shared object file: No such file or directory

    my python version 3.6 cuda10.0 torch1.0.1 torch-sparse0.5.1 do you know how to solve it?

    opened by tanjia123456 1
  • Higher Powers Implementation

    Higher Powers Implementation

    image

    https://github.com/benedekrozemberczki/MixHop-and-N-GCN/blob/6e4ae00055fc1aecd972081ef9c152b0e9de37c1/src/layers.py#L54-L56

    To me it looks like this is implementing H(l+1) = σ(A^j * H(l) * W(l))

    image

    Can you explain where W_j and the concatenation are taking place?

    opened by datavistics 1
  • This paper was accepted in NeuralPS 2018?

    This paper was accepted in NeuralPS 2018?

    I didn't find this paper "A Higher-Order Graph Convolutional Layer" in NeuralPS 2018 accepted list. So I am not sure whether this paper has been accepted?

    opened by Jhy1993 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023