Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

Overview

WSDEC

This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos.

Description

Repo directories

  • ./: global config files, training, evaluating scripts;
  • ./data: data dictionary;
  • ./model: our final models used to reproduce the results;
  • ./runs: the default output dictionary used to store our trained model and result files;
  • ./scripts: helper scripts;
  • ./third_party: third party dependency include the official evaluation scripts;
  • ./utils: helper functions;
  • ./train_script: all training scripts;
  • ./eval_script: all evalulating scripts.

Dependency

  • Python 2.7
  • CUDA 9.0(note: you will encounter a bug saying segmentation fault(core dump) if you run our code with CUDA 8.0)
    • But it seems that the bug still exists. See issue
  • [Pytorch 0.3.1](note: 0.3.1 is not compatible with newer version)
  • numpy, hdf5 and other necessary packages(no special requirement)

Usage for reproduction

Before we start

Before the training and testing, we should make sure the data, third party data are prepared, here is the one-by-one steps to make everything prepared.

1. Clone our repo and submodules

git clone --recursive https://github.com/XgDuan/WSDEC

2. Download all the data

  • Download the official C3D features, you can either download the data from the website or from our onedrive cloud.

    • Download from the official website; (Note, after you download the C3D features, you can either place it in the data folder and rename it as anet_v1.3.c3d.hdf5, or create a soft link in the data dictionary as ln -s YOURC3DFeature data/anet_v1.3.c3d.hdf5)
  • Download the dense video captioning data from the official website; (Similar to the C3D feature, you are supposed to place the download data in the data folder and rename it as densecap)

  • Download the data for the official evaluation scripts densevid_eval;

    • run the command sh download.sh scripts in the folder PREFIX/WSDEC/third_party/densevid_eval;
  • [Good News]: we write a shell script for you to download the data, just run the following command:

    cd data
    sh download.sh
    

3. Generate the dictionary for the caption model

python scripts/caption_preprocess.py

Training

There are two steps for model training: pretrain a not so bad caption model; and the second step, train the final/baseline model.

Our pretrained captioning model is trained.

python train_script/train_cg_pretrain.py

train our final model

python train_script/train_final.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --alias MODEL_NAME

train baselines

  1. train the baseline model without classification loss.
python train_script/train_baseline_regressor.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --alias MODEL_NAME
  1. train the baseline model without regression branch.
python train_script/train_final.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --regressor_scale 0 --alias MODEL_NAME

About the arguments

All the arguments we use can be found in the corresponding training scripts. You can also use your own argumnets if you like to do so. But please mind, some arguments are discarded(This is our own reimplementation of our paper, the first version codes are too dirty that no one would like to use it.)

Testing

Testing is easier than training. Firstly, in the process of training, our scripts will call the densevid_eval in a subprocess every time after we run the eval function. From these results, you can have a general grasp about the final performance by just have a look at the eval_results.txt scripts. Secondly, after some epochs, you can run the evaluation scripts:

  1. evaluate the full model or no_regression model:
python eval_script/evaluate.py --checkpoint YOUR_TRAINED_MODEL.ckp
  1. evaluate the no_classification model:
python eval_script/evaluate_baseline_regressor.py --checkpoint YOUR_TRAINED_MODEL.ckp
  1. evaluate the pretrained model with random temporal segment:
python eval_script/evaluate_pretrain.py --checkpoint YOUR_PRETRAIN_CAPTION_MODEL.ckp

Other usages

Besides reproduce our work, there are at least two interesting things you can do with our codes.

Train a supervised sentence localization model

To know what is sentence localization, you can have a look at our paper ABLR. Note that our work at a matter of fact provides an unsupervised solution towards sentence localization, we introduce the usage for the supervised model here. We have written the trainer, you can just run the following command and have a cup of coffee:

python train_script/train_sl.py

Train a supervised video event caption generation model

If you have read our paper, you would find that event captioning is the dual task of the aforementioned sentence localization task. To train such a model, just run the following command:

python train_script/train_cg.py

BUGS

You may encounter a cuda internal bug that says Segmentation fault(core dumped) during training if you are using cuda 8.0. If such things happen, try upgrading your cuda to 9.0.

other

We will add more description about how to use our code. Please feel free to contact us if you have any questions or suggestions.

Trained model and results

Links for our trained model

You can download our pretrained model for evaluation or further usage from our onedrive, which includes a pretrained caption generator(cg_pretrain.ckp), a baseline model without classification loss(baseline_noclass.ckp), a baseline model without regression branch(baseline_noregress.ckp), and our final model(final_model.ckp).

Cite the paper and give us star ⭐️

If you find our paper or code useful, please cite our paper using the following bibtex:

@incollection{NIPS2018_7569,
title = {Weakly Supervised Dense Event Captioning in Videos},
author = {Duan, Xuguang and Huang, Wenbing and Gan, Chuang and Wang, Jingdong and Zhu, Wenwu and Huang, Junzhou},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {3062--3072},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7569-weakly-supervised-dense-event-captioning-in-videos.pdf}
}
Owner
Melon(Xuguang Duan)
Lick the screen
Melon(Xuguang Duan)
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022