Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

Overview

WSDEC

This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos.

Description

Repo directories

  • ./: global config files, training, evaluating scripts;
  • ./data: data dictionary;
  • ./model: our final models used to reproduce the results;
  • ./runs: the default output dictionary used to store our trained model and result files;
  • ./scripts: helper scripts;
  • ./third_party: third party dependency include the official evaluation scripts;
  • ./utils: helper functions;
  • ./train_script: all training scripts;
  • ./eval_script: all evalulating scripts.

Dependency

  • Python 2.7
  • CUDA 9.0(note: you will encounter a bug saying segmentation fault(core dump) if you run our code with CUDA 8.0)
    • But it seems that the bug still exists. See issue
  • [Pytorch 0.3.1](note: 0.3.1 is not compatible with newer version)
  • numpy, hdf5 and other necessary packages(no special requirement)

Usage for reproduction

Before we start

Before the training and testing, we should make sure the data, third party data are prepared, here is the one-by-one steps to make everything prepared.

1. Clone our repo and submodules

git clone --recursive https://github.com/XgDuan/WSDEC

2. Download all the data

  • Download the official C3D features, you can either download the data from the website or from our onedrive cloud.

    • Download from the official website; (Note, after you download the C3D features, you can either place it in the data folder and rename it as anet_v1.3.c3d.hdf5, or create a soft link in the data dictionary as ln -s YOURC3DFeature data/anet_v1.3.c3d.hdf5)
  • Download the dense video captioning data from the official website; (Similar to the C3D feature, you are supposed to place the download data in the data folder and rename it as densecap)

  • Download the data for the official evaluation scripts densevid_eval;

    • run the command sh download.sh scripts in the folder PREFIX/WSDEC/third_party/densevid_eval;
  • [Good News]: we write a shell script for you to download the data, just run the following command:

    cd data
    sh download.sh
    

3. Generate the dictionary for the caption model

python scripts/caption_preprocess.py

Training

There are two steps for model training: pretrain a not so bad caption model; and the second step, train the final/baseline model.

Our pretrained captioning model is trained.

python train_script/train_cg_pretrain.py

train our final model

python train_script/train_final.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --alias MODEL_NAME

train baselines

  1. train the baseline model without classification loss.
python train_script/train_baseline_regressor.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --alias MODEL_NAME
  1. train the baseline model without regression branch.
python train_script/train_final.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --regressor_scale 0 --alias MODEL_NAME

About the arguments

All the arguments we use can be found in the corresponding training scripts. You can also use your own argumnets if you like to do so. But please mind, some arguments are discarded(This is our own reimplementation of our paper, the first version codes are too dirty that no one would like to use it.)

Testing

Testing is easier than training. Firstly, in the process of training, our scripts will call the densevid_eval in a subprocess every time after we run the eval function. From these results, you can have a general grasp about the final performance by just have a look at the eval_results.txt scripts. Secondly, after some epochs, you can run the evaluation scripts:

  1. evaluate the full model or no_regression model:
python eval_script/evaluate.py --checkpoint YOUR_TRAINED_MODEL.ckp
  1. evaluate the no_classification model:
python eval_script/evaluate_baseline_regressor.py --checkpoint YOUR_TRAINED_MODEL.ckp
  1. evaluate the pretrained model with random temporal segment:
python eval_script/evaluate_pretrain.py --checkpoint YOUR_PRETRAIN_CAPTION_MODEL.ckp

Other usages

Besides reproduce our work, there are at least two interesting things you can do with our codes.

Train a supervised sentence localization model

To know what is sentence localization, you can have a look at our paper ABLR. Note that our work at a matter of fact provides an unsupervised solution towards sentence localization, we introduce the usage for the supervised model here. We have written the trainer, you can just run the following command and have a cup of coffee:

python train_script/train_sl.py

Train a supervised video event caption generation model

If you have read our paper, you would find that event captioning is the dual task of the aforementioned sentence localization task. To train such a model, just run the following command:

python train_script/train_cg.py

BUGS

You may encounter a cuda internal bug that says Segmentation fault(core dumped) during training if you are using cuda 8.0. If such things happen, try upgrading your cuda to 9.0.

other

We will add more description about how to use our code. Please feel free to contact us if you have any questions or suggestions.

Trained model and results

Links for our trained model

You can download our pretrained model for evaluation or further usage from our onedrive, which includes a pretrained caption generator(cg_pretrain.ckp), a baseline model without classification loss(baseline_noclass.ckp), a baseline model without regression branch(baseline_noregress.ckp), and our final model(final_model.ckp).

Cite the paper and give us star ⭐️

If you find our paper or code useful, please cite our paper using the following bibtex:

@incollection{NIPS2018_7569,
title = {Weakly Supervised Dense Event Captioning in Videos},
author = {Duan, Xuguang and Huang, Wenbing and Gan, Chuang and Wang, Jingdong and Zhu, Wenwu and Huang, Junzhou},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {3062--3072},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7569-weakly-supervised-dense-event-captioning-in-videos.pdf}
}
Owner
Melon(Xuguang Duan)
Lick the screen
Melon(Xuguang Duan)
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023