Segmentation for medical image.

Overview

EfficientSegmentation

Introduction

EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image.

Features

  • A whole-volume-based coarse-to-fine segmentation framework. The segmentation network is decomposed into different components, including encoder, decoder and context module. Anisotropic convolution block and anisotropic context block are designed for efficient and effective segmentation.
  • Pre-process data in multi-process. Distributed and Apex training support. Postprocess is performed asynchronously in inference stage.

Benchmark

Task Architecture Parameters(MB) Flops(GB) DSC NSC Inference time(s) GPU memory(MB)
FLARE21 BaseUNet 11 812 0.908 0.837 0.92 3183
FLARE21 EfficientSegNet 9 333 0.919 0.848 0.46 2269

Installation

Installation by docker image

  • Download the docker image.
  link: https://pan.baidu.com/s/1UkMwdntwAc5paCWHoZHj9w 
  password:9m3z
  • Put the abdomen CT image in current folder $PWD/inputs/.
  • Run the testing cases with the following code:
docker image load < fosun_aitrox.tgz
nvidia-docker container run --name fosun_aitrox --rm -v $PWD/inputs/:/workspace/inputs/ -v $PWD/outputs/:/workspace/outputs/ fosun_aitrox:latest /bin/bash -c "sh predict.sh"'

Installation step by step

Environment

  • Ubuntu 16.04.12
  • Python 3.6+
  • Pytorch 1.5.0+
  • CUDA 10.0+

1.Git clone

git clone https://github.com/Shanghai-Aitrox-Technology/EfficientSegmentation.git

2.Install Nvidia Apex

  • Perform the following command:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir ./

3.Install dependencies

pip install -r requirements.txt

Get Started

preprocessing

  1. Download FLARE21, resulting in 361 training images and masks, 50 validation images.
  2. Copy image and mask to 'FlareSeg/dataset/' folder.
  3. Edit the 'FlareSeg/data_prepare/config.yaml'. 'DATA_BASE_DIR'(Default: FlareSeg/dataset/) is the base dir of databases. If set the 'IS_SPLIT_5FOLD'(Default: False) to true, 5-fold cross-validation datasets will be generated.
  4. Run the data preprocess with the following command:
python FlareSeg/data_prepare/run.py

The image data and lmdb file are stored in the following structure:

DATA_BASE_DIR directory structure:
├── train_images
   ├── train_000_0000.nii.gz
   ├── train_001_0000.nii.gz
   ├── train_002_0000.nii.gz
   ├── ...
├── train_mask
   ├── train_000.nii.gz
   ├── train_001.nii.gz
   ├── train_002.nii.gz
   ├── ...
└── val_images
    ├── validation_001_0000.nii.gz
    ├── validation_002_0000.nii.gz
    ├── validation_003_0000.nii.gz
    ├── ...
├── file_list
    ├──'train_series_uids.txt', 
    ├──'val_series_uids.txt',
    ├──'lesion_case.txt',
├── db
    ├──seg_raw_train         # The 361 training data information.
    ├──seg_raw_test          # The 50 validation images information.
    ├──seg_train_database    # The default training database.
    ├──seg_val_database      # The default validation database.
    ├──seg_pre-process_database # Temporary database.
    ├──seg_train_fold_1
    ├──seg_val_fold_1
├── coarse_image
    ├──160_160_160
          ├── train_000.npy
          ├── train_001.npy
          ├── ...
├── coarse_mask
    ├──160_160_160
          ├── train_000.npy
          ├── train_001.npy
          ├── ...
├── fine_image
    ├──192_192_192
          ├── train_000.npy
          ├── train_001.npy
          ├──  ...
├── fine_mask
    ├──192_192_192
          ├── train_000.npy
          ├── train_001.npy
          ├── ...

The data information is stored in the lmdb file with the following format:

{
    series_id = {
        'image_path': data.image_path,
        'mask_path': data.mask_path,
        'smooth_mask_path': data.smooth_mask_path,
        'coarse_image_path': data.coarse_image_path,
        'coarse_mask_path': data.coarse_mask_path,
        'fine_image_path': data.fine_image_path,
        'fine_mask_path': data.fine_mask_path
    }
}

Training

Remark: Coarse segmentation is trained on Nvidia GeForce 2080Ti(Number:8) in the experiment, while fine segmentation on Nvidia A100(Number:4). If you use different hardware, please set the "ENVIRONMENT.NUM_GPU", "DATA_LOADER.NUM_WORKER" and "DATA_LOADER.BATCH_SIZE" in 'FlareSeg/coarse_base_seg/config.yaml' and 'FlareSeg/fine_efficient_seg/config.yaml' files.

Coarse segmentation:

  • Edit the 'FlareSeg/coarse_base_seg/config.yaml'
  • Train coarse segmentation with the following command:
cd FlareSeg/coarse_base_seg
sh run.sh

Fine segmentation:

  • Edit the 'FlareSeg/fine_efficient_seg/config.yaml'.
  • Edit the 'FlareSeg/fine_efficient_seg/run.py', set the 'tune_params' for different experiments.
  • Train fine segmentation with the following command:
cd  FlareSeg/fine_efficient_seg
sh run.sh

Inference:

  • The model weights are stored in 'FlareSeg/model_weights/'.
  • Run the inference with the following command:
sh predict.sh

Contact

This repository is currently maintained by Fan Zhang ([email protected]) and Yu Wang ([email protected])

Citation

Acknowledgement

Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023