Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

Related tags

Deep LearningDAGSurv
Overview

DAGSurv

Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a parametric probabilistic function of fully or partially observed covariates. All the existing technique for survival analysis assume that the covariates are statistically independent. To integrate the cause-effect relationship between covariates and the time-to-event outcome, we present to you DAGSurv which encodes the causal DAG structure into the analysis of temporal data and eventually leads to better results (higher Concordance Index).

plot

Dependencies

This code requires the following key dependencies:

  • Python 3.8
  • torch==1.6.0
  • pycox==0.2.1

Usage

To train the DAGSurv model, please run the main.py as python main.py

There are a number of hyper-parameters present in the script which can be easily changed.

Experiments

We evaluated our approach on two real-world and two synthetic datasets; and used time-dependent Concordance Index(C-td) as our evaluation metric.

Real-World Datasets

  • METABRIC : The Molecular Taxonomy of Breast Cancer International Consor- tium (METABRIC) is a clinical dataset which consists of gene expressions used to determine different subgroups of breast cancer. We consider the data for 1,904 patients with each patient having 9 covariates. Furthermore, out of the total 1,904 patients, 801 (42.06%) are right-censored, and the rest are deceased (event).
  • GBSG : Rotterdam and German Breast Cancer Study Group (GBSG) contains breast-cancer data from Rotterdam Tumor bank. The dataset consists of 2,232 patients out of which 965 (43.23%) are right-censored, remaining are deceased (event), and there were no missing values. In total, there were 7 features per patient.

Time-Dependent Concordance Index(C-td)

We employ the time-dependent concordance index (CI) as our evaluation metric since it is robust to changes in the survival risk over time. Mathematically it is given as,

plot

Results

Here, we present our results on the two real-world datasets mentioned above -

Model/Experiment METABRIC GBSG
DAGSurv 0.7323 ± 0.0056 0.6892 ± 0.0023
DeepHit 0.7309 ± 0.0047 0.6602 ± 0.0026
DeepSurv 0.6575 ± 0.0021 0.6651 ± 0.0020
CoxTime 0.6679 ± 0.0020 0.6687 ± 0.0019

Code References

[1] Yue Yu, Jie Chen, Tian Gao, Mo Yu. "DAG-GNN: DAG Structure Learning with Graph Neural Networks."
[2] Changhee Lee, William R. Zame, Jinsung Yoon, Mihaela van der Schaar. "DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks."

Owner
Rahul Kukreja
Rahul Kukreja
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023