MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Related tags

Deep Learningsampyl
Overview

Sampyl

May 29, 2018: version 0.3

Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to compute gradients, Sampyl uses autograd to compute gradients. However, you are free to write your own gradient functions, autograd is not necessary. This project was started as a way to use MCMC samplers by defining models purely with Python and numpy.

Sampyl includes these samplers currently:

  • Metropolis-Hastings
  • Hamiltonian
  • NUTS
  • Slice

For each sampler, you pass in a function that calculates the log probability of the distribution you wish to sample from. For the Hamiltonian and NUTS samplers, gradient log probability functions are also required. If autograd is installed, the gradients are calculated automatically. Otherwise, the samplers accept gradient log-p functions which can be used whether autograd is installed or not.

It is still under active development with more features coming soon!

Dependencies

Works for Python 2 or 3.

Currently, numpy and scipy are the only dependencies. To use the automatic gradient log-P capabilities, you will need to install autograd.

Installation

Unfortunately, there was a name collision, so use this to install from PyPI:

pip install sampyl-mcmc

Documentation

You can find the documentation at http://mcleonard.github.io/sampyl/. It is a work in progress, of course, but we'll cover all the important bits soon enough.

Tests

Tests are written for use with pytest, in the tests folder.

License

MIT

Owner
Mat Leonard
I build things - typically around online education, AI/ML, data science, etc. Formerly teaching at Udacity and Kaggle.
Mat Leonard
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022