Official Repository of NeurIPS2021 paper: PTR

Related tags

Deep LearningPTR
Overview

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning

Dataset Overview

Figure 1. Dataset Overview.

Introduction

A critical aspect of human visual perception is the ability to parse visual scenes into individual objects and further into object parts, forming part-whole hierarchies. Such composite structures could induce a rich set of semantic concepts and relations, thus playing an important role in the interpretation and organization of visual signals as well as for the generalization of visual perception and reasoning. However, existing visual reasoning benchmarks mostly focus on objects rather than parts. Visual reasoning based on the full part-whole hierarchy is much more challenging than object-centric reasoning due to finer-grained concepts, richer geometry relations, and more complex physics. Therefore, to better serve for part-based conceptual, relational and physical reasoning, we introduce a new large-scale diagnostic visual reasoning dataset named PTR. PTR contains around 70k RGBD synthetic images with ground truth object and part level annotations regarding semantic instance segmentation, color attributes, spatial and geometric relationships, and certain physical properties such as stability. These images are paired with 700k machine-generated questions covering various types of reasoning types, making them a good testbed for visual reasoning models. We examine several state-of-the-art visual reasoning models on this dataset and observe that they still make many surprising mistakes in situations where humans can easily infer the correct answer. We believe this dataset will open up new opportunities for part-based reasoning.

PTR is accepted by NeurIPS 2021.

Authors: Yining Hong, Li Yi, Joshua B Tenenbaum, Antonio Torralba and Chuang Gan from UCLA, MIT, IBM, Stanford and Tsinghua.

Arxiv Version: https://arxiv.org/abs/2112.05136

Project Page: http://ptr.csail.mit.edu/

Download

Data and evaluation server can be found here

TODOs

baseline models will be available soon!

About the Data

The data includes train/val/test images / questions / scene annotations / depths. Note that due to data cleaning process, the indices of the images are not necessarily consecutive.

The scene annotation is a json file that contains the following keys:

    cam_location        #location of the camera
    cam_rotation        #rotation of the camera
    directions          #Based on the camera, the vectors of the directions
    image_filename      #the filename of the image
    image_index         #the index of the image
    objects             #the objects in the scene, which contains a list of objects
        3d_coords       #the location of the object
        category        #the object category
        line_geo        #a dictionary containing (part, line unit normal vector) pairs. See the [unit normal vector](https://sites.math.washington.edu/~king/coursedir/m445w04/notes/vector/normals-plane.html) of a line. If the vector is not a unit vector, then the part cannot be considered a line.
        plane_geo       #a dictionary containing (part, plane unit normal vector) pairs. See the [unit normal vector](https://sites.math.washington.edu/~king/coursedir/m445w04/notes/vector/normals-plane.html) of a plane. If the vector is not a unit vector, then the part cannot be considered a line.
        obj_mask        #the mask of the object
        part_color      #a dictionary containing the colors of the parts
        part_count      #a dictionary containing the number of the parts
        part_mask       #a dictionary containing the masks of the parts
        partnet_id      #the id of the original partnet object in the PartNet dataset
        pixel_coords    #the pixel of the object
    relationships       #according to the directions, the spatial relationships of the objects
    projection_matrix   #the projection matrix of the camera to reconstruct 3D scene using depths
    physics(optional)   #if physics in the keys and the key is True, this is a physical scene.

The question file is a json file which contains a list of questions. Each question has the following keys:

    image_filename      #the image file that the question asks about
    image_index         #the image index that the question asks about
    program             #the original program used to generate the question
    program_nsclseq     #rearranged program as described in the paper
    question            #the question text
    answer              #the answer text
    type1               #the five questions types
    type2               #the 14 subtypes described in Table 2 in the paper

Data Generation Engine

The images and scene annotations can be generated via invoking data_generation/image_generation/render_images_partnet.py

blender --background --python render_images_partnet.py -- [args]

To generate physical scenes, invoke data_generation/image_generation/render_images_physics.py

blender --background --python render_images_physics.py -- [args]

For more instructions on image generation, please go to this directory and see the README file

To generate questions and answers based on the images, please go to this directory, and run

python generate_questions.py --input_scene_dir $INPUT_SCENE_DIR --output_dir $OUTPUT_QUESTION_DIR --output_questions_file $OUTPUT_FILE

The data generation engine is based partly on the CLEVR generation engine.

Errata

We have manually examined the images, annotations and questions twice. However, provided that there are annotation errors of the PartNet dataset we used, there could still be some errors in the scene annotations. If you find any errors that make the questions unanswerable, please contact [email protected].

Citations

@inproceedings{hong2021ptr,
author = {Hong, Yining and Yi, Li and Tenenbaum, Joshua B and Torralba, Antonio and Gan, Chuang},
title = {PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning},
booktitle = {Advances In Neural Information Processing Systems},
year = {2021}
}
Owner
Yining Hong
https://evelinehong.github.io
Yining Hong
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaƫl Defferrard We

haguettaz 12 Dec 10, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023