An implementation of RetinaNet in PyTorch.

Overview

RetinaNet

An implementation of RetinaNet in PyTorch.

RetinaNet Structure

Installation

  1. Install PyTorch and torchvision.
  2. For faster data augmentation, install pillow-simd:
pip uninstall -y pillow
pip install pillow-simd

Training

COCO 2017

  1. First, install pycocotools:
git clone https://github.com/pdollar/coco/
cd coco/PythonAPI
make
python setup.py install
cd ../..
rm -r coco
  1. Then download COCO 2017 into ./datasets/COCO/:
cd datasets
mkdir COCO
cd COCO

If your using wget:

wget http://images.cocodataset.org/zips/train2017.zip &&
wget http://images.cocodataset.org/zips/val2017.zip &&
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip

If your using aria2c (recommended on for higher bandwidth connections and for allowing resumption of the download. Tune the number of max concurrent downloads (-j) and max connections per server (-x) as needed:

aria2c -x 10 -j 10 http://images.cocodataset.org/zips/train2017.zip &&
aria2c -x 10 -j 10 http://images.cocodataset.org/zips/val2017.zip &&
aria2c -x 10 -j 10 http://images.cocodataset.org/annotations/annotations_trainval2017.zip

unzip *.zip
rm *.zip

Then just run:

python train_coco.py

Pascal VOC

cd datasets
mkdir VOC
cd VOC
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar &&
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar &&
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar

If your using aria2c (recommended on for higher bandwidth connections and for allowing resumption of the download. Tune the number of max concurrent downloads (-j) and max connections per server (-x) as needed:

aria2c -x 10 -j 10 http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar &&
aria2c -x 10 -j 10 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar &&
aria2c -x 10 -j 10 http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar

tar xf *.tar
rm *.tar

Then just run:

python train_voc.py

Custom Dataset

Lots to write here. 😉

Evaluation

To evaluate an image on a trained model:

python eval.py [checkpoint_path] [image_path]

This will create an image (output.jpg) with bounding box annotations.

Todo

  1. Finish converting the COCO dataset class to work with batches.
  2. Train COCO 2017 for 90,000 iterations and save a reusable checkpoint.
  3. Try training on Pascal VOC and add download instructions.
  4. Produce bounding box outputs for a few sanity check images.
  5. Upload trained weights to Github releases.
  6. Train on the 🔮 magic proprietary dataset .

Credits

Owner
Conner Vercellino
Interested in NLP, metalearning and other random machine learning topics.
Conner Vercellino
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023