This project uses Template Matching technique for object detecting by detection of template image over base image.

Overview

Object Detection Project Using OpenCV

projectLogo

This project uses Template Matching technique for object detecting by detection the template image over base image.

REQUIREMENTS

  • Python python  

  • OpenCV   

pip install opencv-python
pip install Tkinter

📝 CODE EXPLANATION

Importing Differnt Libraries
import cv2
import tkinter as tk 
from tkinter import filedialog,messagebox
import os
import sys

Taking Image input using Tkinter

Base Image Input Template Image Input
Base Image Input Template Image Input

Taking User Input using TKinter

root = tk.Tk() 
root.withdraw() 
file_path_base = filedialog.askopenfilename(initialdir= os.getcwd(),title="Select Base Image: ")
file_path_temp= filedialog.askopenfilename(initialdir= os.getcwd(),title="Select Template Image: ")

Loading base image and template image using cv2.imread()

Input Image Template Image Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
Input Image
Template Image
Result Image
try:
    img = cv2.imread(file_path_base)

cv2.cvtColor()method is used to convert an image from one color space to another. There are more than 150 color-space conversion methods available in OpenCV.

Syntax: cv2.cvtColor(image, code, dst, dstCn)

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    template = cv2.imread(file_path_temp,0)

Getting the height and width of the template image using .shape method.

    h ,w = template.shape

Error dialogue box using Tkinter

error

except cv2.error:
   messagebox.showinfo("Warning!","No Image Found!")
   sys.exit(0)

cv2.matchTemplate is used to comapare images. It gives a 2D-array as output.

match = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.99

cv2.minMaxLoc returns the top-left corner of the template position for the best match.

min_val, max_val, min_location, max_location = cv2.minMaxLoc(match)
location = max_location
font = cv2.FONT_HERSHEY_PLAIN

cv2.rectangle() method is used to draw a rectangle on any image.

Syntax: cv2.rectangle(image, start_point, end_point, color, thickness)

cv2.rectangle(img, location, (location[0] + w, location[1] + h), (0,0,255), 2)

cv2.putText() method is used to draw a text string on any image.

Syntax: cv2.putText(image, text, start_point, font, fontScale, color, thickness, lineType, bottomLeftOrigin)

cv2.putText(img,"Object Spotted.", (location[0]-40,location[1]-5),font , 1, (0,0,0),2)

  • cv2.imwrite() method is used to save an image to any storage device. This will save the image according to the specified format in current working directory.
  • cv2.imshow method is used to display an image in a window. The window automatically fits to the image size.

Syntax: cv2.imwrite(filename, image)

Syntax: cv2.imshow(window_name, image)

cv2.imwrite('images/result.jpg',img)
cv2.imshow('Results.jpg',img)

cv2.waitkey() allows you to wait for a specific time in milliseconds until you press any button on the keyword.

cv2.waitKey(0)

cv2.destroyAllWindows() method destroys all windows whenever any key is pressed.

cv2.destroyAllWindows()

📬 Contact

If you want to contact me, you can reach me through below handles.

@prrthamm   Pratham Bhatnagar

Owner
Pratham Bhatnagar
Computer Science Engineering student at SRM University. || Blockchain || ML Enthusiast || Open Source || Team member @srm-kzilla || Associate @NextTechLab
Pratham Bhatnagar
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022