3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

Overview

3DMV

3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 paper, 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation.

Code

Installation:

Training is implemented with PyTorch. This code was developed under PyTorch 0.2 and recently upgraded to PyTorch 0.4.

Training:

  • See python train.py --help for all train options. Example train call:
python train.py --gpu 0 --train_data_list [path to list of train files] --data_path_2d [path to 2d image data] --class_weight_file [path to txt file of train histogram] --num_nearest_images 5 --model2d_path [path to pretrained 2d model]

Testing

  • See python test.py --help for all test options. Example test call:
python test.py --gpu 0 --scene_list [path to list of test scenes] --model_path [path to trained model.pth] --data_path_2d [path to 2d image data] --data_path_3d [path to test scene data] --num_nearest_images 5 --model2d_orig_path [path to pretrained 2d model]

Data:

This data has been precomputed from the ScanNet (v2) dataset.

  • Train data for ScanNet v2: 3dmv_scannet_v2_train.zip (6.2G)
    • 2D train images can be processed from the ScanNet dataset using the 2d data preparation script in prepare_data
    • Expected file structure for 2D data:
    scene0000_00/
    |--color/
       |--[framenum].jpg
           ⋮
    |--depth/
       |--[framenum].png   (16-bit pngs)
           ⋮
    |--pose/
       |--[framenum].txt   (4x4 rigid transform as txt file)
           ⋮
    |--label/    (if applicable)
       |--[framenum].png   (8-bit pngs)
           ⋮
    scene0000_01/
    ⋮
    
  • Test scenes for ScanNet v2: 3dmv_scannet_v2_test_scenes.zip (110M)

Citation:

If you find our work useful in your research, please consider citing:

@inproceedings{dai20183dmv,
 author = {Dai, Angela and Nie{\ss}ner, Matthias},
 booktitle = {Proceedings of the European Conference on Computer Vision ({ECCV})},
 title = {3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation},
 year = {2018}
}

Contact:

If you have any questions, please email Angela Dai at [email protected].

Owner
Владислав Молодцов
Родился в Казани, учусь на ФРТК МФТИ
Владислав Молодцов
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Özlem Taşkın 0 Feb 23, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023