Code for our CVPR2021 paper coordinate attention

Overview

Coordinate Attention for Efficient Mobile Network Design (preprint)

This repository is a PyTorch implementation of our coordinate attention (will appear in CVPR2021).

Our coordinate attention can be easily plugged into any classic building blocks as a feature representation augmentation tool. Here (pytorch-image-models) is a code base that you might want to train a classification model on ImageNet.

Note that the results reported in the paper are based on regular training setting (200 training epochs, random crop, and cosine learning schedule) without using extra label smoothing, random augmentation, random erasing, mixup. For specific numbers in ImageNet classification, COCO object detection, and semantic segmentation, please refer to our paper.

Comparison to Squeeze-and-Excitation block and CBAM

diagram

(a) Squeeze-and-Excitation block (b) CBAM (C) Coordinate attention block

How to plug the proposed CA block in the inverted residual block and the sandglass block

wheretoplug

(a) MobileNetV2 (b) MobileNeXt

Some tips for designing lightweight attention blocks

  • SiLU activation (h_swish in the code) works better than ReLU6
  • Either horizontal or vertical direction attention performs the same to the SE attention
  • When applied to MobileNeXt, adding the attention block after the first depthwise 3x3 convolution works better
  • Note sure whether the results would be better if a softmax is applied between the horizontal and vertical features

Object detection

We use this repo (ssdlite-pytorch-mobilenext).

Semantic segmentation

We use this repo. You can also refer to mmsegmentation alternatively.

Citation

You may want to cite:

@inproceedings{hou2021coordinate,
  title={Coordinate Attention for Efficient Mobile Network Design},
  author={Hou, Qibin and Zhou, Daquan and Feng, Jiashi},
  booktitle={CVPR},
  year={2021}
}

@inproceedings{sandler2018mobilenetv2,
  title={Mobilenetv2: Inverted residuals and linear bottlenecks},
  author={Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={4510--4520},
  year={2018}
}

@inproceedings{zhou2020rethinking,
  title={Rethinking bottleneck structure for efficient mobile network design},
  author={Zhou, Daquan and Hou, Qibin and Chen, Yunpeng and Feng, Jiashi and Yan, Shuicheng}
  booktitle={ECCV},
  year={2020}
}

@inproceedings{hu2018squeeze,
  title={Squeeze-and-excitation networks},
  author={Hu, Jie and Shen, Li and Sun, Gang},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={7132--7141},
  year={2018}
}

@inproceedings{woo2018cbam,
  title={Cbam: Convolutional block attention module},
  author={Woo, Sanghyun and Park, Jongchan and Lee, Joon-Young and Kweon, In So},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  pages={3--19},
  year={2018}
}
Owner
Qibin (Andrew) Hou
Research fellow at NUS.
Qibin (Andrew) Hou
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022