[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

Overview

The neural architecture of language: Integrative modeling converges on predictive processing

Code accompanying the paper The neural architecture of language: Integrative modeling converges on predictive processing by Schrimpf, Blank, Tuckute, Kauf, Hosseini, Kanwisher, Tenenbaum, and Fedorenko.

Large-scale evaluation of neural network language models as predictive models of human language processing. This pipeline compares dozens of state-of-the-art models and 4 human datasets (3 neural, 1 behavioral). It builds on the Brain-Score framework and can easily be extended with new models and datasets.

Installation

git clone https://github.com/mschrimpf/neural-nlp.git
cd neural-nlp
pip install -e .

You might have to install nltk by hand / with conda.

Run

To score gpt2-xl on the Blank2014fROI-encoding benchmark:

python neural_nlp run --model gpt2-xl --benchmark Blank2014fROI-encoding --log_level DEBUG

Other available benchmarks are e.g. Pereira2018-encoding (takes a while to compute), and Fedorenko2016v3-encoding.

You can also specify different models to run -- note that some of them require additional download of weights (run ressources/setup.sh for automated download).

Data

When running a model on a benchmark, the data will automatically be downloaded from S3 (e.g. https://github.com/mschrimpf/neural-nlp/blob/master/neural_nlp/benchmarks/neural.py#L361 for the Pereira2018 benchmark). Costly ceiling estimates have also been precomputed and will be downloaded since they can take days to compute.

Precomputed scores

Scores for models run on the neural, behavioral, and computational-task benchmarks are also available, see the precomputed-scores.csv file. You can re-create the figures in the paper using the analyze scripts.

Citation

If you use this work, please cite

@article{Schrimpf2021,
	author = {Schrimpf, Martin and Blank, Idan and Tuckute, Greta and Kauf, Carina and Hosseini, Eghbal A. and Kanwisher, Nancy and Tenenbaum, Joshua and Fedorenko, Evelina},
	title = {The neural architecture of language: Integrative modeling converges on predictive processing},
	year = {2021},
	journal = {Proceedings of the National Academy of Sciences},
	url = {https://www.pnas.org/content/118/45/e2105646118}
}

Owner
Martin Schrimpf
Research in computational neuroscience & deep learning at MIT
Martin Schrimpf
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022