Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Overview

Deep Illuminator

Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image. It has been tested with several datasets and models and has been shown to succesfully improve performance. It has a built in visualizer created with Streamlit to preview how the target image can be relit. This tool has an accompanying paper.

Example Augmentations

Usage

The simplest method to use this tool is through Docker Hub:

docker pull kartvel/deep-illuminator

Visualizer

Once you have the Deep Illuminator image run the following command to launch the visualizer:

docker run -it --rm  --gpus all \
-p 8501:8501 --entrypoint streamlit \ 
kartvel/deep-illuminator run streamlit/streamlit_app.py

You will be able to interact with it on localhost:8501. Note: If you do not have NVIDIA gpu support enabled for docker simply remove the --gpus all option.

Generating Variants

It is possible to quickly generate multiple variants for images contained in a directory by using the following command:

docker run -it --rm --gpus all \                                                                                               ─╯
-v /path/to/input/images:/app/probe_relighting/originals \
-v /path/to/save/directory:/app/probe_relighting/output \
kartvel/deep-illuminator --[options]

Options

Option Values Description
mode ['synthetic', 'mid'] Selecting the style of probes used as a relighting guide.
step int Increment for the granularity of relighted images. max mid: 24, max synthetic: 360

Buidling Docker image or running without a container

Please read the following for other options: instructions

Benchmarks

Improved performance of R2D2 for [email protected] on HPatches

Training Dataset Overall Viewpoint Illumination
COCO - Original 71.0 65.4 77.1
COCO - Augmented 72.2 (+1.7%) 65.7 (+0.4%) 79.2 (+2.7%)
VIDIT - Original 66.7 60.5 73.4
VIDIT - Augmented 69.2 (+3.8%) 60.9 (+0.6%) 78.1 (+6.4%)
Aachen - Original 69.4 64.1 75.0
Aachen - Augmented 72.6 (+4.6%) 66.1 (+3.1%) 79.6 (+6.1%)

Improved performance of R2D2 for the Long-Term Visual Localization challenge on Aachen v1.1

Training Dataset 0.25m, 2° 0.5m, 5° 5m, 10°
COCO - Original 62.3 77.0 79.5
COCO - Augmented 65.4 (+5.0%) 83.8 (+8.8%) 92.7 (+16%)
VIDIT - Original 40.8 53.4 61.3
VIDIT - Augmented 53.9 (+32%) 71.2 (+33%) 83.2(+36%)
Aachen - Original 60.7 72.8 83.8
Aachen - Augmented 63.4 (+4.4%) 81.7 (+12%) 92.1 (+9.9%)

Acknowledgment

The developpement of the VAE for the visualizer was made possible by the PyTorch-VAE repository.

Bibtex

If you use this code in your project, please consider citing the following paper:

@misc{chogovadze2021controllable,
      title={Controllable Data Augmentation Through Deep Relighting}, 
      author={George Chogovadze and Rémi Pautrat and Marc Pollefeys},
      year={2021},
      eprint={2110.13996},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023